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ABSTRACT 
 
Our goal is to specify the retinex model as precisely as possible. The core retinex computation is clearly specified in the 
recent MATLAB implementation2; however, there remain several free parameters which introduce significant variability 
into the model’s predictions. In this paper, we extend previous work1 on specifying these parameters. In particular, 
instead of looking for fixed values for the parameters, we establish methods which automatically determine values for 
them based on the input image. These methods are tested on the McCann-McKee-Taylor asymmetric matching data5 
along with some previously unpublished data that include simultaneous contrast targets. 
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INTRODUCTION 
 
The MATLAB implementation2 of the retinex model has three important input parameters: the number of iterations the 
algorithm performs at each level of its multi-level computation,  the “post-lut” output lookup table function, and the 
input image size. The model’s final output depends strongly on the values chosen for the first two of these parameters 
but not the third1. 
 
The retinex model aims to predict the sensory response of lightness. In previous work by two of us (Funt and Ciurea)1, 
we established values for the parameters based upon fitting the model’s predictions to the data originally described over 
35 years ago by McCann, McKee and Taylor5. This fit led to the conclusion that 33 iterations had the lowest global 
average of the differences between observer data and computed values, assuming that the number of iterations was 
constant for all levels of the multi-resolution computation. However, McCann felt that 33 was too high a number, and 
would not lead to a good model of simultaneous contrast. Hence, together we began the current series of experiments by 
including previously unpublished data from lightness matching experiments with simultaneous contrast targets. We also 
added other unpublished data for two other target types: one contained a fixed set of patches of various shades of gray 
appear on a background which varied from black to gray to white; the other contained a staircase of shades of gray under 
illumination with rising, falling or constant intensity. 
 
For the simultaneous contrast data, we indeed did find that a much smaller value is required for the iteration parameter in 
order to make a good fit. However, we could no longer find a single value for the number of iterations that 
simultaneously would minimized the error for the combined data from the MMT (McCann-McKee-Taylor), GB (fixed 
scale of grays on different backgrounds), SC (simultaneous contrast) and IG (illumination gradient on staircase) 
experiments. This led us to consider a method of automatically calculating how many iterations to use based on how the 
computation was proceeding. In addition, the post-lut processing needs to change as a function of the number of 
iterations, so this led us to a method of automatically calculating the appropriate post-lut. 
 

NUMBER OF ITERATIONS 
 
The two MATLAB implementations of retinex in Funt et. al.2  are referred to as McCann99 retinex and Frankle-McCann 
retinex. For brevity, we concentrate here only on McCann99 retinex, but the results are similar for both versions. 
McCann99 retinex creates a multi-resolution pyramid from the input by averaging image data. It begins the pixel 
comparisons at the most highly averaged, or top level of the pyramid. After computing so called New Products 
(precursors to the final lightness estimates) on the image at a reduced resolution, the resulting New Product values are 
propagated down, by pixel replication, to the pyramid’s next level as initial estimates at that level. Further pixel 



comparisons refine the estimates at the higher resolution level and then those new estimates are again propagated down a 
level in the pyramid.  This process continues until values have been computed for the pyramid’s bottom level.  
 
At each level, the basic step is the comparison of each pixel to each of its immediate neighbors.  The number of 
iterations refers to the number of times all the immediate neighbors are cycled through before moving down to the next 
level in the pyramid. Since pixels are only directly compared to immediate neighbors, comparisons to more distant pixels 
at the current pyramid level are only made implicitly by propagation of information from pixel to pixel during these 
iterations. Hence, increasing the number of iterations increases the spatial distance across which pixels are related during 
the computation.  McCann99 retinex  uses the same number of iterations at all levels and so there is only a single 
iteration parameter to specify and have limited this paper to considering a single value for all levels.  
 

POST-LUT PROCESSING 
 
Postlut processing refers to applying a function f  uniformly to every image pixel, I(x,y)=f(I(x,y)), for all image locations 
(x,y) immediately after the main retinex computation. The term “postlut” derives from historical use of image processing 
hardware using a lookup table (lut) as a final post-processing step.  Post-lut processing is important in bringing the final 
result into the appropriate dynamic range, compensating for differences in overall illumination intensity between test 
targets, and in converting to the coordinates of Munsell Value scale used in recording the experimental data. Although 
all these factors can be thought of separately, they are all eventually combined into a single post-lut function. 
 
The first post-lut step adjusts the dynamic range. Retinex output from the pyramidal spatial comparison stage, falls in the 
[0,1] range. Because the value 1 represents ‘white’ and retinex assumes there is at least one white pixel in every image, 
the value 1 necessarily arises in the output.  However, the lowest output value depends on the image content and varies 
with the number of iterations used. The fewer the iterations, the more local the spatial comparisons will be, and 
therefore, the less the likelihood of big intensity differences being found.  As a result, the fewer the iterations, the higher 
the minimum retinex output value (Figure 1 in Funt et. al.2 illustrates this effect).  The first purpose of the post-lut is to 
stretch the retinex output to a reasonable range. Since the amount of stretching needed depends on the number of 
iterations, and we vary the number of iterations in our experiments, we decided to always linearly scale the retinex 
output to the full [0,1] range. This stretch does not correct for the fact that the number of iterations performs a non-linear 
compression of the image. The post-lut is not fixed, but rather depends on the input image and number of iterations used.  
This decision effectively means that we are assuming that there is at least on black location in the test target. While this 
assumption need not be true for scenes in general and could lead to errors in retinex predictions, it is true for all the test 
targets subjects viewed.  
 
After scaling to the [0,1] range, the post-lut then converts the retinex output values, r, to the lightness scale used for 
recording subject’s  matches. For the MMT data set, the conversion is to Munsell Value scale V using3: 

V = 2.539 r1/3 – 1.838 for r > 0.384 
For the SC, GB and IG data sets, the conversion is to a lightness scale described by Stiehl et. al.6.  Based on a fit to the 
raw data, we use the following function to convert the log luminance to the lightness scale values, L: 

L = 129.6 r1/100-132.45 
 
The final post-lut component compensates for differences in overall illumination intensity between the test and match 
conditions. Only the MMT experiments involved such intensity differences. The compensation is based on data from 
Figure 8 of McCann, Land and Tatnall4. Generally, the effect of this correction is slight. Details can be found in Funt and 
Ciurea1. 
 

LIGHTNESS MATCHING DATA 
 
The data for the MMT matching experiments was reported a long time ago4. The ‘new’ data we report here is based on 
experiments by McCann which were also conducted earlier, but not previously reported in the literature. These 
experiments involve transparent grayscale targets lit from behind with uniform illumination. Subjects were asked to 
report the lightness of each patch in the target display using a standard lightness transparency display as a reference. The 
standard lightness display consists of 25 squares of different lightnesses against a white surround. The squares are 



 
Patch Luminance Pixel 

value 
Observed 
lightness 

Standard 
deviation 

G 1001 255 8.75 0.15 
E 595 236 7.55 0.20 
I 439 225 6.25 0.25 
C 336 215 5.94 0.31 
J 228 200 5.19 0.19 
H 125 178 4.36 0.26 
D 63 153 3.37 0.50 
F 50 145 2.80 0.30 
B 1001 255 8.80 0.20 
A 1 0 1.0 0 

B A

C D E F 

G H I J 

arranged in a serpentine path such that the change in lightness from any of the 25 squares to the next is constant6. In the 
resulting lightness scale, 1.0 corresponds to an opaque area and 9.0 to the brightest area.  The experiments were based on 
4 to 7 subjects, which each subject repeating the matches on 3 different occasions. 
 
The matching procedure was set up such that in the normal viewing position, the subject saw the test display as the only 
thing in the field of view. By turning 90 degrees to the right, the subject would see instead the standard lightness display 
as the only thing in the field of view. Subjects were allowed to look back and forth between viewing the test display and 
the standard display as many times as desired without a time constraint4. The test display and the standard lightness 
display had the same level of luminance. 
 
Figures 1-9 illustrate the targets along with the corresponding luminance, pixel value for each patch as input to the 
retinex algorithm, and average observed lightness reported for each patch. With the exception of the IG targets, all the 
patches have uniform luminance. For the IG targets, the five patches present a gradient of luminance specified by the left 
and right edge. It should be noted that the figures are intended only to illustrate the corresponding targets. They are not 
accurate reproductions of the targets. Their printed appearance is not the same as under the controlled experimental 
conditions. 
 

Figure 1: Grays on White 
 
 

Figure 2: Grays on Gray  
 
 
 
 
 
 

 
Patch Luminance Pixel 

value 
Observed 
lightness 

Standard 
deviation 

G 1001 255 9.00 0.20 
E 595 236 8.50 0.50 
I 439 225 7.31 0.31 
C 336 215 7.06 0.31 
J 228 200 5.88 0.38 
H 125 178 4.98 0.28 
D 63 153 4.08 0.48 
F 50 145 3.05 0.55 
B 228 200 5.75 0.25 
A 1 0 1.0 0 

B A

C D E F 

G H I J 



 
Patch Luminance Pixel 

value 
Observed 
lightness 

Standard 
deviation 

G 1001 255 9.00 0.05 
E 595 236 8.55 0.45 
I 439 225 7.53 0.78 
C 336 215 7.29 0.54 
J 228 200 6.80 0.50 
H 125 178 5.65 0.35 
D 63 153 5.20 0.50 
F 50 145 4.68 0.38 
B 1 0 0.90 0.10 
A 1 0 0.83 0.08 

B A

C D E F 

G H I J 

 
 
 

Patch Luminance Pixel 
value 

Observed 
lightness 

Standard 
deviation 

C 1001 255 8.85 0.18 
D 321 213 6.16 0.4 
E 321 213 6.95 0.45 
B 50 145 3.95 0.45 
A 1 1 1.08 0.27 
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Figure 3: Grays on Black 
 
 

Figure 4: Simultaneous Contrast ‘Single’ 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Simultaneous Contrast ‘Double’ 
 
 

 
 
 
 

Patch Luminance Pixel 
value 

Observed 
lightness 

Standard 
deviation 

B 1001 255 9.03 0.23 
C 321 213 6.15 0.52 
A 1 1 1.13 0.13 
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Patch Luminance Pixel 
value 

Observed 
lightness 

A 1 1 1.02 
9.1 
9 
90 B 1001 255 

8.9 
7.8 
7.9 
7.9 C 840.8 249 

8 
7.2 
7.4 
7.4 D 706.3 242 

7.6 
6.8 
7 
7 E 593.3 236 

7.2 
6.5 
6.6 
6.6 F 498.4 229 

6.8 

 
 
 
 

Figure 6: Simultaneous Contrast ‘Strip’ 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 7: Staircase under Constant Illumination. The subjects were asked visually to divide each of the five patches B, C, D, E and F 
in four equal-width strips and report the lightnesses in each of these regions. The 4 observed lightness values from top to bottom 

associated with each patch are those from the strips in left to right order across each patch. 
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Patch Luminance Pixel 
value 

Observed 
lightness 

Standard 
deviation 

C 1001 255 9.09 0.29 
D 321 213 6.2 0.5 
E 321 213 7.69 0.58 
B 50 145 4.04 0.54 
A 1 1 1 0.25 

 
 



 
The other two staircase targets are of the same form and use the same patch labelling. The Figure 7 target was of uniform 
luminance across each patch.  Figures 8 and 9 list the corresponding luminances and observed lightness for staircase 
targest in which the luminance varies across each patch as if it were under an illumination gradient. In one case it 
increases, in the other it decreases.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 8: Staircase under Rising Illumination Intensity                  Figure 9: Staircase under Decreasing Illumination Intensity 
 

AUTOMATIC SELECTION OF THE NUMBER OF ITERATIONS 
 
To determine the optimal number of iterations (i.e., cycles of comparing a pixel to its neighbors at each pyramid level), 
we plotted the RMS (root mean square) error in retinex predictions as a function of the number of iterations. The 
variation in error is shown for the case of the SC data in Figure 1.   
 
Since subjects reported a single lightness value for each patch, we calculate retinex’s lightness estimate based on the 
mean of the lightness estimates over all pixels within a patch. The prediction error for a patch therefore measures the 
difference between retinex’s lightness estimate and the mean across all subjects of the lightnesses of the matches made 
for that patch.  The overall error for a target is the simply the RMS of the errors for the individual patches it contains.  
 
For the simultaneous contrast targets, the minimum error occurs at a small number of iterations as can be seen from  
Figure 10. The “Single” line shows the average RMS error of retinex predictions in lightness units for the case of a target  
(Figure 4) in which there are three areas:  the gray center, the white surround and the black background.  At one 
iteration, with a linear scaling of max and min, the RMS value is 0.9.  That is much larger than the standard deviation of 
observer results of 0.52, 0.23 and 0.13.  Increasing the number of iterations to 10 causes a drop in RMS values to 0.2 
units.  From 10 to 50 units the values drop from 0.2 to 0.1. For this target any value above 5 iterations does a reasonable 
job of matching the observer data. 
 
The thin line “Double” describes the data from Figure 5. Here the average data show a minimum value around 6 or 7 
iterations.  This is because the dark gray surround and the gray area in the dark gray are very sensitive to the number of 
iterations.  They have such a large effect that it makes the average of five areas exhibit the minima. The luminances from 
the two central grays is the same. This target is of interest because the two grays do not look the same. With too few 

Patch Luminance Pixel 
value 

Observed 
lightness 

A 1 1 1.2 
8.6 840.8  

(left edge) 
249 

(left edge) 8.6 
8.6 B 1001 

(right edge) 
255 

(right edge) 8.6 
7.8 840.8 

(left edge) 
249 

(left edge) 7.9 
7.9 C 1001 

(right edge) 
255 

(right edge) 8 
7.5 840.8 

(left edge) 
249 

(left edge) 7.7 
7.7 D 1001 

(right edge) 
255 

(right edge) 7.9 
7.4 840.8 

(left edge) 
249 

(left edge) 7.6 
7.6 E 1001 

(right edge) 
255 

(right edge) 7.8 
7.3 840.8 

(left edge) 
249 

(left edge) 7.5 
7.5 F 1001 

(right edge) 
255 

(right edge) 7.8 

Patch Luminance Pixel 
value 

Observed 
lightness 

A 1 1 1.0 
9 1001 

(left edge) 
255 

(left edge) 8.9 
8.9 B 841 

(right edge) 
249 

(right edge) 8.8 
8.9 706.3 

(left edge) 
242 

(left edge) 8.8 
8.8 C 498.4 

(right edge) 
229 

(right edge) 8.8 
7 418.6 

(left edge) 
223 

(left edge) 7 
7 D 351.6 

(right edge) 
216 

(right edge) 7.1 
6.6 295.4 

(left edge) 
210 

(left edge) 6.6 
6.7 E 248.1 

(right edge) 
204 

(right edge) 6.7 
6.2 208.4 

(left edge) 
197 

(left edge) 6.2 
6.4 F 175.1 

(right edge) 
191 

(right edge) 6.5 



iterations the calculated value for the gray in black is too high. At the point of minimum error, the calculation renders the 
gray in black one lightness unit higher than the gray in white. When increasing the number of iterations above the 
minimum, the calculations report that the two grays are identical, losing the ability to predict simultaneous contrast and 
increasing the RMS error. 
 
Figure 11 shows the average error for the 24 targets in the combined MMT, SC, GB and IG data sets versus the number 
of iterations. The minimum error now occurs when the number of iterations is quite large; although, the curve is quite 
flat so the minimum is also not very distinct. Since it is clear from Figure 11 that a single choice for the number of 
iterations cannot be determined from the RMS error measurement, we considered what test might serve as an automatic 
stopping condition so that the number of iterations could be adjusted automatically on a case-by-case basis.  The 
stopping condition cannot be based on minimizing the RMS error directly, since the subjects’ matches are not available 
to the retinex—they are after all what retinex is supposed to be predicting.   
 
We have chosen instead to use the change in retinex output as the number of iterations is increased from n to n+1.  
While this is analogous to the situation of numerical solution of a typical optimization problem where the minimization 
process is iterated until the change becomes small enough, it is not precisely the same.  The difference is in the meaning 
of the term ‘iteration’.  In the optimization case, the entire process is repeated until convergence; whereas, in the retinex 
case, retinex in its entirety is not being repeated. Instead, it is the number of times the process of cycling through the 
neighbors is repeated at each level.  
 
Let Rx

n be the retinex output at location x when retinex’s iterations parameter has been set to n. The proposed retinex 
stopping condition  for image size N and threshold ε can be expressed as: 
 

ε
N

RR n
x

x

n
x

≤
−∑ + 21 )(

 

Using this stopping condition, the number of retinex iterations will vary with the input target.  What is the optimal value 
of ε?  We determine an optimal value for it by brute force search.  In other words, we chose an initial high value for ε, 
ran retinex on all the test targets and calculated the RMS prediction error, decreased ε by a small amount and repeated 
the process.  A minimum occurs at ε = 0.015. The average prediction error drops to 0.62.  In comparison, the minimum 
average error for any fixed choice of the number of iterations (as shown in Figure 11) remained at 1.71.  
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Figure 10: Simultaneous Contrast Targets:  RMS error measuring the difference between retinex lightness predictions and subjects’ 

reported matching lightness as a function of the number of iterations. 
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Figure 11: RMS error in retinex lightness prediction averaged across MMT, SC, GB and IG experiments as a function of the number 
of iterations. For each choice of the number of iterations parameter, the same choice is then used for retinex for all targets. 
 

CONCLUSION 
 
Our goal has been to specify retinex as completely as possible so that it can be tested unambiguously. With the proper 
selection of parameters, retinex can reduce the average RMS prediction error to 0.62 units on a 1-to-9 lightness scale.   
This requires the retinex parameters ‘post-lut’ and ‘number of iterations’ be set. In this paper, we presented a new 
method of setting them automatically.  Optimizing for a fixed setting for the number of iterations resulted in an overall 
average RMS error of 1.71, so the new automatic-stopping-condition technique constitutes a significant improvement 
over a single choice for the number of iterations. Since the method changes only retinex’s input parameters, the retinex 
model itself has not changed.  However, the advantage of using the retinex model in conjunction with automatic 
parameter selection is that it can be applied in a hands-off manner without requiring further intervention. Future work 
will include modifying retinex to employ different numbers of iterations automatically at each pyramid level.  
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