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Abstract		
The	goal	of	human	color	vision	research	is	to	understand	how	we	see	Color.	Our	vision	has	evolved	to	
guide	us	through	the	world’s	Natural	Scenes.	Appearances	made	by	our	color	vision	are	the	result	of:	
op/cs	of	the	eye,	molecular	quanta	catch	of	receptors,	and	spa/al	image	processing	of	neurons.	

The	scene	in	front	of	the	lens	is	the	first	cri/cal	variable	in	modeling	vision.	The	spa/al	distribu/on	
of	radiances	coming	to	the	eye	ini/ates	the	first	major	visual	event,	namely	intraocular	glare.	Imaging	
the	re/nal	image	redistributes	the	very	large	dynamic	range	of	light	in	complex	Natural	Scenes.	

The	 second	 event	 is	 the	 receptors’	 response,	 namely,	 Light/MaMer	 reac/ons	 in	 atoms	 and	
molecules.	Color	results	from	the	different	spectral	sensi/vi/es	of	rods	and	cones.	

The	 third	event	 is	 that	 receptors	 ini/ate	 the	network	of	neural	 spa/al	comparisons	 that	 lead	 to	
Appearances.	This	network	is	s/mulated	by	the	output	of	all	receptors	in	the	re/na	simultaneously.	

This	 talk	 is	 about	 the	 effects	 of	 scenes,	 glare,	 quanta	 catches,	 neural	 image	 processing,	 and	
Appearances.	 This	 talk	 introduces	 8	 different	 studies	 of	 vision	 that	 trace	 the	 light	 from	 the	 scene,	
through	 measurements	 of	 Appearances.	 It	 discusses	 Theore/cal	 Color	 experiments,	 and	 prac/cal	
Color	technologies	that	respond	to	complex	Natural	Scenes.		

Keywords:	Intraocular	glare,	Rod/Lcone	Color,	Appearance	in	Complex	Scenes,	Calculate	
Appearances,	Neural	Spa;al	Comparisons,	Algorithms	that	mimic	vision.	

INTRODUCTION	

Studies	 of	 Color	 Vision	 and	 Light/MaMer	 interac/ons	 are	 24	 centuries	 old.	 Plato	 and	 Aristotle	
speculated	 about	 color	 vision.	 Ancient	 Greeks	 reported	 light-sensi/ve	 maMer.	 When	 certain	
substances	 were	 exposed	 to	 light,	 the	 substances	 changed,	 indica/ng	 a	 chemical	 reac/on.	 These	
Light/MaMer	interac/ons	are	the	result	of	photons	transferring	energy	to	atoms	and	molecules.	This	
energy	 transfer	 is	 called	 quanta	 catch,	 or	 maMer’s	 spectral	 response	 to	 light.	When	 light	 exposes	
silver-halide	 salt,	 each	 quanta	 catch	 converts	 a	 silver	 ion	 to	 a	 stable	 silver	 atom.	 All	 Light/MaMer	
interac/ons	take	place	in	the	spa/al	dimensions	of	angstroms.	

Human	vision	captures	informa/on	over	a	solid	angle	of	>140°.	It	begins	by	op/cally	imaging	light	
on	 receptors	 in	 the	 re/na.	 A\er	 that	 it	 sends	 the	 quanta	 catch	 informa/on	 from	 100,000,000	
receptors	to	the	brain,	using	only	1,000,000	op/c	nerves.	From	neural	junc/ons	every	receptor	sends	
its	light	responses	to	neurons.	These	neurons	make	Spa/al	Comparisons	to	make	visual	Appearances.	

Tradi/onal	photography,	movies,	and	analog	videos	are	 records	of	 sensors’	 responses	 to	quanta	
catch.	Today,	we	talk	of	picture	elements,	or	pixels.	Cameras	capture	light,	and	record	it	as	digital	pixel	
values.	 Imaging	 technologies	 transmit	 the	 array	 of	 all	 those	 digit	 values	 to	 different	media:	 print,	
television,	and	digital	displays.	The	vast	majority	of	imaging	technologies	perform	this	task	one	pixel	
at	 a	 /me.	 Namely	 the	 capture,	 transmission,	 and	 presenta/on	 to	 observers	 works	 the	 same	 as	 a	
landline	 telephone	 wire	 connec/ng	 the	 sensor	 response	 with	 the	 display	 output.	 These	 imaging	
pipelines,	from	photon	capture	to	display,	are	constant	for	all	local	image	segments.	Every	segment	is	
processed	separately	-	independent	of	all	the	signals	from	all	the	other	segments.	

In	1961,	as	a	Freshman	at	Harvard,	I	began	a	part-/me	Lab	Tech	job	for	Edwin	Land,	and	Nigel	Daw	
of	Polaroid	in	its	Vision	Research	Laboratory.	Land’s	study	of	Red	and	White	(Two-Color)	Photography	
made	him	realize	that	vision	is	fundamentally	different	from	photography.	Light/MaMer	interac/ons	
are	 limited	to	a	single	pixel’s	response	to	 light.	Silver	halide	film	responds	to	 individual	microscopic	
scene	 segments,	 independent	 of	 the	 rest	 of	 the	 scene.	 However,	 Land	 realized	 that	 visual	
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Appearances	respond	to	the	spa/al	content	of	the	en/re	scene,	a\er	the	receptors’	responses.	In	the	
mid-1960’s	 Land	 and	 I	 spent	 /me	 discussing	 vision’s	 response	 to	 the	 Natural	 Scene.	 One	 of	 the	
themes	we	discussed	was	“How	human	spa/al	vision	worked”.	Could	understanding	human	spa/al	
vision	 lead	 to	beMer	photographs?	Land	was	equally	 fascinated	with	both	Color	challenges:	Theory	
and	 Prac/ce.	 How	 could	 technology	 “mimic	 human	 vision”?	Over	 the	 decades	 that	 challenge	was	
refined	to	become:	accurately	capture	light	from	the	en/re	scene,	calculate	appearances	of	all	scene	
segments	(using	mul/-resolu/on	spa/al	comparisons),	and	write	all	appearances	on	film,	now	media.	

Figure	 1	 illustrates	 three	 stages	 of	 photography.	 The	 three	 photos	were	 taken	 out	 of	 the	 same	
laiced	window	 in	 Fox	 Talbot’s	 home,	 Lacock	 Abbey,	Wiltshire,	 UK.	 Figure	 1A	 is	 a	 reproduc/on	 of	
Talbot’s	 1835	 nega/ve	 photo.	 It	 is	 the	 oldest	 surviving	 silver	 halide	 nega/ve	 image.	 Figure	 1B	 is	 a	
digital	 rendi/on	 of	 the	 same	 scene	 using	 three	 fixed	 (R,G,B)	 tone-scale	 reproduc/on	 responses	 to	
spectral	 light.	 This	 photo	mimics	 the	 combined	 posi/ve	 and	 nega/ve	 responses	 of	 Kodacolor	 and	
Fujicolor	 prints.	 In	 other	words,	 it	mimics	 the	 pipeline	 process	 that	made	most	 color	 photo	 prints	
from	1940	 to	 2000.	 Each	 input	 pixel	 determined	 the	 value	 of	 the	 output	 pixel.	 All	 pixels	 used	 the	
same	pipeline	(Tone	Scale	Func/on).	Figure	1B	is	a	pixel-by-pixel	rendi/on	of	the	films’	quanta	catch.	

Figure	1.	Three	photos	of	Fox	Talbot’s	window.	1A	is	a	reproduction	of	Talbot’s	surviving	negative.	1B	illustrates	
color	prints	made	using	3	(RGB)	fixed	Tone	Scale	Curves	(eg.	Kodacolor).	1C	Digital	digital	camera	image	made	with	
spatial	comparisons	to	compress	the	scene’s	high	range	of	light	to	fit	the	print’s	low	range.	

Figure	1C	is	an	icon	of	photography	that	mimics	human	vision.	It	is	a	digital	photograph	using	HP’s	
Digital	Flash	image	processing	that	incorporated	Frankle	and	McCann’s	(1983)	Re/nex	algorithm.	The	
image	 used	 spa/al	 comparisons	 to	 transform	 the	 scene’s	 high-dynamic-range	 into	 a	 low-dynamic-
range	image	for	prin/ng.	By	emphasizing	edges	and	controlling	gradients	the	algorithm	compressed	
the	scene’s	range	of	light	to	render	the	Appearance	of	the	bright	garden	and	dim	interior.		

Vision’s	 response	 to	 the	 Natural	 Scene	 is	 to	 build	 Appearances	 out	 of	 mul/-resolu/on	 spa/al	
comparisons.	 These	 spa/al	 comparisons	 tend	 to	 cancel	 the	effects	of	op/cal	 glare	by	 transforming	
quanta	catch	into	a	new	unique	rendi/on	of	the	scene.	Op/cal	glare’s	scene	transforma/on	responds	
to	 the	 distribu/on	 of	 light	 in	 the	 scene.	 Vision	 counteracts	 glare	 by	 neural	 spa/al	 processing	 that	
responds	 to	 the	distribu/on	of	 light	on	 the	 re/na.	 (McCann	&	Rizzi,	2012).	This	 talk	compares	and	
contrasts	vision’s	spa/al	processing	with	the	single	pixel	pipelines	used	in	photography	from	1835	to	
1981.	Un/l	digital	image	processing,	photography	lacked	the	technology	to	compare	quanta	catches	
from	every	part	of	the	scene.	As	well,	this	talk	discusses	how	digital	photography	is	currently	moving	
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from	 Tone	 Scales	 to	 Spa/al	 Processes	 to	 improve	 its	 rendi/on	 of	 all	 scenes.	 This	 talk	 describes	 8	
studies	 in	which	the	receptor	quanta	catches	a\er	 intaocular	glare,	and	neural	spa/al	comparisons	
interact	with	 the	Natural	 Scene,	 and	 other	 complex	 images.	 These	 studies	 emphasize	 that	 vision’s	
spa/al	 comparison	 network	 vastly	 expands	 our	 ability	 to	 do	 much	 more	 than	 just	 count	 quanta.	
Further,	studies	of	Natural	Scenes	“opens	our	eyes”	to	incorrect	hidden	assump/ons	associated	with	
single-pixel	pipelines.	

1.	Uniform	Appearance	Color	Space	

Newton,	Goethe,	and	painters	describe	many	different	hue	circles.	Munsell	was	a	fine-art	painter	
who	taught	at	Mass	College	of	Art,	Boston.	He	also	invented	a	uniform	color	space.	Munsell	did	not	
use	theore/cal	principles	to	define	his	space.	Instead,	he	gave	observers	the	prac/cal	task	of	selec/ng	
a	sample	that	appears	equidistant	from	two	endpoints	in	a	Natural	Scene.	The	Munsell	space	we	use	
today	is	a	work	of	the	first	1975	Judd	Medalist,	Dorothy	Nickerson.	Her	work	defined	the	volume	of	
the	uniformly	spaced	papers	in	today’s	Munsell	Re-nota/on	(Newhall,	Nickerson,	&	Judd,	1943).		

Figure	2A	shows	Munsell’s	early	pain/ng	of	a	color	space	in	1900.	 It	 is	an	 idealized	color	sphere	
with	white	as	north	pole,	and	black	as	south	pole.	Different	hues	are	arranged	around	the	equator.	
Nickerson’s	model	 (Figure	2B)	shows	the	actual	color	space	built	up	using	equal	 increments	 in	hue,	
lightness,	 and	 chroma.	 The	 white/black	 polar	 axis	 is	 a	 cube-root	 func/on	 of	 reflectance.	 The	 hue	
circumference	 is	 a	 much	 more	 complex	 shape.	 It	 is	 the	 result	 of	 the	 spectra	 of	 illumina/on,	 the	
atomic	orbitals	of	dye	and	pigment	molecules,	the	quanta	catch	of	human	receptors,	and	their	post-
receptor	neural	processing.	The	Color	Space	that	has	uniform	spacing	is	far	from	spherical.	Each	hue	
angle	has	a	unique	lightness/	chroma	popula/on	of	colorants.	

Figure	2.	Three	representations	of	Munsell’s	Uniform	Color	Space.	2A	Munsell’s	painting	of	a	color	sphere	in	1900.	
2B	Nickerson’s	plot	of	1943	Re-notation.	2C	Stiehl’s	1983	plots	of	9	HDR	equal	steps	in	Lightness	(scene	&	retina).		

The	 1943	 Munsell-OSA	 space	 has	 traded	 the	 globe’s	 elegant	 simplicity	 for	 the	 most	 valuable	
property	in	digital	imaging,	namely	a	Uniform	Color	Space.	Distances	in	color	appearance	have	to	be	
calculated	 in	 a	 uniform	 3-D	 space.	 Digital	 images	 live	 in	 the	 domain	 of	 numbers,	 and	 their	
manipula/on.	The	molecular	physics	of	light	sensors	(silver	halides	and	silicon	chips)	counts	photons	
to	make	a	 linear	 scale.	The	average	of	2	 linear	quanta	catches	 is	 the	midpoint	between	 them.	 	All	
subsequent	pipeline	image-processing	manipula/ons	are	non-linear	in	radiance.	In	non-linear	spaces	
ordinary	arithme/c	averages	act	differently.	Nonlinear	digit	values	need	defini/ons	and	calibra/ons.	

In	the	reflectance	of	papers,	the	white	is	~100%,	and	black	is	~4%;	average	is	~52%.	Munsell	asked	
observers	to	tell	him	the	midpoint	between	white	and	black,	and	extended	the	principle	to	make	an	
en/re	uniform	color	 space.	Munsell’s	middle-gray	N/5.0	 reflects	20%	of	 incident	photons	not	52%.	
Photographers	 recognize	middle-gray	 as	 the	 an/quated	 Kodak	 18%	Gray	 Card,	 used	 to	 set	 camera	
exposures.		Photographers	used	18%	Gray	Cards	as	an	object	at	the	center	of	the	Natural	Scene.		
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Why	is	middle	gray	20%,	not	52%	reflectance?	

Physiologists	since	the	1930’s	have	measured	re/nal	receptor’s	response	to	light.	Neural	response	is	
propor/onal	to	log	of	the	outer	segments	quanta	catch	(Oyster,	1999).	But,	Appearances	in	a	Natural	
Scene	 do	 not	 fit	 a	 logarithmic	 func/on.	 Munsell’s	 Lightness	 Values,	 CIE	 L*,	 and	 Savoy’s	 HDR	
experiment	(bisec/ng	Lightness)	fit	a	cube	root	func/on.	Figure	2C	plots	log	luminance	in	blue	circles,	
and	 cube-root	 luminance	 in	 dark	 red	 dots	 from	 9	 equally	 space	 Lightnesses.	 S/ehl,	 Savoy,	 and	
McCann	 (1983)	 used	Munsell’s	 bisec/on	 technique	 to	make	 an	 HDR	 uniform	 lightness	 scale	 using	
transparencies	on	a	 light	box.	Figure	2C	plots	 the	 telephotometer	 luminance	measurements	of	 the	
display	as	dark-red	dots.	The	data	fits	the	cube	root	of	scene	luminance.	The	authors	also	calculated	
the	 light	on	 the	 re/na	a\er	 intaocular	glare.	They	used	 the	work	of	 the	1991	 Judd	Medalists	Hans	
Vos,	namely	his	Glare	 Spread	Func/on	 (GSF)	 to	 calculate	 the	 receptors’	 actual	 s/mulus,	ploMed	as	
blue	circles.	The	GSF	converted	scene	luminances	to	re/nal	luminances:	

• Equally-spaced	Lightnesses	fit	log	Re/nal	Luminance	
• 	Re/nal	Receptor	response	fits	log	Re/nal	Luminance	
• 	Lightness	is	propor/onal	to	Re/nal	Receptor	response	
• 	Mid-point	in	Receptor	response	=	20%;	Mid-point	in	quanta	catch	=	52%	

Middle-gray,	Lightness	step	5	in	Figure	1C	is	20%	of	the	maximum	re/nal	luminance.	Above	middle	
gray,	the	log	and	cube	root	func/ons	superimpose.	As	scene	luminances	decrease	below	20%,	op/cal	
veiling	glare	adds	scaMered	light	from	the	rest	of	the	scene	to	the	darker	steps.	Equal	Lightness	steps	
required		observers	to	select	darker	and	darker	transparencies	in	order	to	overcome	scaMered	light.	

[	Summary:	Lightness	is	propor;onal	to	Re;nal	Receptor	response	(aEer	glare)	]		

Contrast	and	Assimila:on	

Visual	illusions	are	a	popular	pursuit	of	color	scien/sts.	Null	experiments	are	a	favorite.	How	does	the	
rest	of	the	scene	influence	the	appearance	of	iden/cal	s/muli?	In	Figure	3A	we	have	8	iden/cal	Gray	
luminances	(4	circles-top	and	4	crosses-boMom).	On	the	le\	side	Grays	are	on	a	uniform	background,	
and	all	appear	the	same	Gray	 lightness.	On	the	right	the	four	Grays	have	different	backgrounds.	On	
top-right	we	see	Gray	circles	on	the	tradi/onal	Contrast	backgrounds	of	black	(lighter	appearance),	
and	 white	 (darker	 appearance).	 Below	 the	 Contrast	 illusion,	 we	 have	 Assimila/on	 by	 Todorović,	
(1997).	It	is	scaled	to	fit	the	Contrast	illusion	above	it.	In	Assimila/on	we	see	Gray	circles	behind	slits	
in	white	and	black	foregrounds.	In	this	spa/al	arrangement,	the	mostly	white	ground	makes	the	Gray	
appear	lighter,	the	mostly	black	ground	makes	the	Gray	appear	darker.	

Figure	3.	Contrast	and	Assimilation	analysis.	3A	Reproduction	of	the	illusion.	3B	Two	horizontal	plots	of	calculated	
retinal	luminance	(blue=Contrast	/	red=Assimilation).	3C	Pseudocolor	visualization	of	3A	with	color	map.			

As	scien/sts,	how	do	we	sort	out	our	observa/ons	that	the	top	Contrast-white	ground	makes	darker	
Gray	 appearance;	 and	 boMom	Assimila/on-white	makes	 lighter	Gray.	 How	 does	 the	 top	 Contrast-
black	ground	make	lighter	Gray;	and	the	boMom	Assimila/on-black	make	darker	gray?	
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The	 answer	 is	 that	 there	 are	 two	 different,	 independent	 spa/al	 transforma/ons	 of	 the	 light	

coming	 to	 our	 eyes.	 The	 first	 transforma/on	 is	 pre-re/nal,	 namely	 intraocular	 glare.	 The	 pair	 of	
Contrast/Assimila/on	 illusions	 has	 4	 iden/cal	 Grays	 at	 the	 cornea	 (Scene	 luminance).	 They	 are	
spa/ally	 transformed	 by	 glare.	 The	 4	Grays	 become	 4	markedly	 different	 Re/nal	 s/muli.	While	 all	
Grays	are	iden/cal	at	the	cornea,	the	receptor	responses	are	very	different	because	of	glare	light.		

We	used	the	McCann	and	Vonikakis	(2018)	Matlab	program	to	calculate	the	paMern	of	light	on	the	
re/na	 caused	 by	 Figure	 3A	 image	 (2048	 x	 1024	 pixels;	 8	 bit).	 Figure	 3A	 was	 viewed	 on	 an	 iMac	
computer	screen	at	30	inches,	subtending	15°	by	7.5°.	The	digit	to	screen	luminance	calibra/on	was	
made	using	a	Konica	Minolta	CS100	colorimetric	telephotometer.	Measurements	were	made	using	an	
opaque	mask	blocking	all	other	light	from	the	screen	in	a	dark	room.		

The	blue	 arrows	 in	 Figure	 3A	 indicate	 the	 loca/on	of	 a	 horizontal	 digital	 scan	of	 the	 calculated	
re/nal	 image	 (Contrast	 Illusion).	 The	blue	plot	 in	 Figure	3B	 is	 the	average	 re/nal	 luminance	of	 a	3	
pixel	high	scan	across	the	middle	of	the	4	gray	circles	in	the	Contrast	illusion.	The	red	arrows	in	Figure	
3A	indicate	the	loca/on	of	a	second	horizontal	digital	scan.	The	red	plot	 in	Figure	3B	is	the	average	
re/nal	luminance	scan	across	the	middle	of	the	4	Gray	crosses	in	the	Assimila/on	illusion.	

The	hidden	assump/on	in	both	Figure	3A	Contrast	and	Assimila/on	illusions	is	that	there	is	zero	
intraocular	 glare.	 Comparisons	 of	 Contrast	 and	 Assimila/on	 assume	 that	 equal	 digits	 sent	 to	 the	
display	device	causes	equal	 re/nal	 luminances.	However,	 the	 red	and	blue	 scans	of	 the	gray	 scene	
components	 are	different.	 In	 Figure	3B-le\,	Grays	 on	 a	uniform	 light	 gray	background,	 the	 crosses	
scan	 (red)	 have	more	 background	 scaMer	 than	 the	 circles	 (blue).	 In	 Figure	 3B-right,	 Assimila/on’s	
white	foreground	is	adjacent	to	the	Gray	cross,	and	it	adds	s/ll	more	glare	light.	As	well,	Contrast’s	
Black	circle	caused	the	least	amount	of	glare	in	all	8	Gray	segments.	These	plots	shows	that	glare	is	
the	first	transforma/on	that	distorts	scene	luminances.	The	neural	phenomena	that	create	Contrast	
and	 Assimila/on	 begin	 with	 unequal	 re/nal	 luminances.	 This	 takes	 the	 Null	 experiment	 (Equal	
S/muli)	argument	“off	the	table”.	

The	illusions	in	Figure	3A	do	not	make	a	constant	neural	input	for	all	Grays	in	the	scene.	Figure	3A	
is	an	abstract	simula/on	of	the	Natural	Scene.	It	is	made	up	of	uniform	patches	of	light	with	perfect	
square-wave	edges.	There	are	no	gradients	in	this	digital	image.	The	re/nal	image	of	3A	is	different.	
All	 the	 sharp	edges	become	a	wide	variety	of	different	 slope	gradients.	 Figure	3C	 is	 a	pseudocolor	
rendi/on	of	the	calculated	re/nal	digits	propor/onal	to	log	re/nal	luminance.	The	digital	map	on	the	
right	side	iden/fies	the	hues	used	to	visualize	the	gradients	in	the	re/nal	image.	Digit	255	is	rendered	
as	 white,	 Digit	 127	 is	 gray	 blue	 green,	 and	 digit	 0	 is	 black.	 By	 rendering	 the	 re/nal	 image	 in	 64	
discrete	colors,	pseudocolor	breaks	gradients	into	visible	bands	that	allow	us	to	visualize	the	shapes	
of	the	gradients.	Gradients	in	pseudocolor	are	much	more	visible	that	in	an	achroma/c	rendi/on.		

In	the	illusions	white	areas	contribute	more	glare	than	they	receive,	They	show	liMle	change.	Glare	
transforms	uniform	scene	blacks	into	a	wide	assortment	of	gradients	on	the	re/na.	Figure	3C	shows	
many	different	local	spa/al	transforma/ons	of	the	“equal	grays”	in	the	scene.	Intraocular	glare	upsets	
the	null	experiment;	it	redistributes	Scene’s	light	in	the	re/nal	image.		

[	Summary:	Re;nal	Luminances	≠	Scene	Luminances	]	
Intraocular	Glare	is	the	first	Spa;al	Transforma;on	of	scene	informa;on	]	

2.	Light/MaFer	interacGons	of	molecular	physics	→	Colorimetry	

Color	is	our	response	to	light	from	a	scene.	Colorimetry’s	Matches	are	the	result	of	the	Light/MaMer	
interac/ons	of	molecular	physics.	Colorimetry’s	 input	 is	 the	spectral	radiances	of	a	spot	of	 light.	As	
David	 Wright,	 the	 1977	 Judd	 Medalist,	 pointed	 out	 “colorimetry	 ends	 once	 the	 light	 has	 been	
absorbed	by	the	colour	receptors	in	the	re/na	and	that	appearance	science	begins	as	the	signals	from	
the	receptors	start	their	journey	to	the	visual	cortex”	(Wright,	1987).			
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David	Wright	splits	Color	into	two	topics:	Colorimetry,	and	Appearance.	Colorimetry	is	a	triumph	

of	psychophysics.	The	spectral	sensi/vi/es	of	the	receptors	are	the	input	to	vision	(Figure	4A).	Light/
maMer	 interac/ons	 lead	 to	 the	 color	matches	 that	David	Wright	 contributed	 to	Colorimetry.	 These	
matches	are	the	result	of	the	individual	quanta	catch	of	independent	light	receptors.	Equal	receptor	
quanta	catches	make	matches	 that	 take	place	 in	 the	 re/nal	 rod	and	cone	outer	segments.	The	red	
ellipse	at	 the	 top	of	 the	 le\	side	 iden/fies	 the	only	site	of	 light/maMer	cone	 interac/ons.	The	only	
scene	radiance	measurements	allowed	 in	all	CIE	Colorimetry	calcula/ons	are	the	X,	Y,	Z	values	of	a	
single	 small	 spot	 of	 light	 on	 these	 receptors.	 Colorimetry	 predicts	 matches	 from	 the	 spectral	
radiances	of	single	spots	of	light	on	a	no-light	background.	If	there	is	no	glare	from	surrounding	scene	
segments,	 then	 the	 only	 glare	 comes	 from	 the	 spot	 itself.	 The	 red	 ellipse	 in	 Figure	 4A	 illustrates	
Wright’s	stop	sign	for	Colorimetry,	namely	the	independent	quanta	catch	in	receptor	outer	segments	
(McCann,	2020).		
[	Summary:	Colorimetry	calculates	equal	quanta	catches	to	predict	color	matches.		Applying	CIE	X,Y,Z	

to	Natural	Scenes	requires	an	addi;onal	calcula;on	of	the	effects	of	intraocular	glare	]	

Figure	4	Wright’s	Colorimetry/	Appearance	distinction.	4A	Wright’s	Colorimetry	is	limited	to	receptors’	quanta	
catch.	4B	Color	Appearance	begins	to	renders	HDR	scenes	using	a	network	of	neurons	that	make	Spatial	
Comparisons	in	the	retina.	4C	Spatial	Comparisons	continue	at	every	stage	in	the	visual	pathway.	

3.	Appearance:	Neural	SpaGal	Comparisons	→	rendiGon	of	natural	HDR	scenes	

Figure	4B	uses	a	scene	icon,	namely,	John	Constable’s	1825	HDR	pain/ng.	It	illustrates	the	Bishop,	his	
cathedral	in	sunlight,	and	his	garden	in	shade.	It	is	a	record	of	what	Constable	saw.	His	Appearances	
of	 the	 scene	 were	 recorded	 by	 his	 pain/ng.	 Unlike	 Colorimetry,	 real	 HDR	 Natural	 Scenes	 have	
abundant	 op/cal	 glare	 in	 both	 vision	 and	 cameras	 (McCann	 and	Rizzi,	 2012;	McCann,	 Vonikakis	&	
Rizzi,	 2018).	 Glare	 transforms	 the	HDR	 scene	 radiances	 into	 a	 substan/ally	 different	 image	 on	 the	
re/na.(McCann	and	Vonikakis,	2018)	While	scene	radiance	of	a	single	spot	is	the	appropriate	input	to	
Colorimetry’s	 Matches,	 we	 cannot	 use	 the	 single	 pixel	 radiance	 as	 the	 input	 to	 neural	 spa/al	
processing.	A	spot	of	scene	radiance	does	not	 include	the	substan/al	scaMered	 light	 from	all	other	
scene	segments.	Neural	input	is	the	complete	array	of	all	receptors’	quanta	catch	a\er	glare,	not	the	
scene	radiance	of	a	single	pixel.	

In	Figure	4B	at	the	neural	junc/ons	(blue	arrow),	on	the	lower	end	of	the	rod	and	cone	receptors,		
the	study	of	Appearance	begins.	Color	Appearance	models	use	all	receptors’	response	as	input	to	the	
re/na’s	complex	spa/al	processing.	Figure	4B	is	based	on	John	Dowling’s	map	of	re/nal	connec/ons.	
It	is	the	start	of	the	cascade	of	neural	interac/ons	that	travel	down	the	op/c	nerve	and	throughout	
the	brain.	Figure	4C	shows	the	many	different	types	of	neural	spa/al	comparisons,	and	their	loca/on	
along	 the	 visual	 pathway.	 It	 illustrates	 the	 work	 of	 Dowling,	 Kuffler,	 Barlow,	 Daw,	 Hubel,	 Wiesel,	
Devalois,	 Zeki,	 and	 Conway.	 The	 visual	 pathway	 is	 a	 cascade	 of	 spa/al	 comparisons	 star/ng	 with	
receptor’s	synapses	and	con/nuing	at	every	neural	stage	(McCann,	2020).	

[	Summary:	Neurons	build	Appearances	using	spa;al	comparisons	]	
[	Neurons	make	the	second	Spa;al	Transforma;on	of	scene	informa;on	(quanta	catch)	]	
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	 Color	Vision	responds	to	Natural	Scenes
4.	Neural	Spa:al	Comparisons	-	Edges	not	Light	control	Color	Appearance	

Figure	5A	 is	a	 simple	 illustra/on	of	edges.	On	a	white	page	we	see	a	 reproduc/on	of	a	 smooth	
digital	gradient	from	255	to	0.	On	top	of	that	gradient	are	9	iden/cal	rectangles,	each	with	uniform	
digit	146.	(Use	your	computer’s	Digital	Color	Meter	to	verify	that	all	these	rectangles	are	iden/cal.)	
The	Appearance	of	 the	9	 rectangles	 varies	 from	 light	 gray	 to	dark	 gray.	 Scene	 luminance	does	not	
correlate	with	appearance.	The	uniform	gray	luminances	have	dis/nctly	different	edge	ra/os	with	the	
surrounding	gradient.	Edges,	not	uniform	luminance,	control	Appearance.	

Figure	5B	(le\)	illustrates	a	sec/on	of	Land’s	Black&White	Mondrian	-	complex	array	of	achroma/c	
maMe	papers.(Land	and	McCann,	1971)	The	 illumina/on	was	a	 smooth	 luminance	gradient	 (low	at	
top	/	high	at	boMom).	Two	middle	gray	papers	are	in	the	red	rectangle.	There	are	two	points	on	this	
pair	 that	measured	160.	 The	upper	160	 is	 the	 combina/on	of	 a	higher	 reflectance	paper	 (right)	 in	
slightly	 lower	 illumina/on.	The	 lower	160	 is	 the	combina/on	of	a	 lower	reflectance	(le\)	 in	slightly	
higher	illumina/on.	The	luminance	of	the	right	paper	is	200	in	the	higher	illumina/on.		

The	lower	change	from	luminance	160	to	200	is	an	edge	caused	by	an	edge	in	luminance.	Edges	
causes	substan/al	changes	in	Appearance.		

The	 ver/cal	 change	 from	 luminance	 160	 to	 200	 is	 caused	 by	 a	 smooth	 gradient	 in	 luminance.	
Gradients	cause	almost	invisible	changes	in	Appearance.		

[	Summary:	Edges,	not	light,	control	Appearance.		
In	Natural	Scenes	Edges	and	Gradients	are	cri;cal	variables,	not	Reflectance	and	Illumina;on.	]	

Figure	5	Edges	and	Gradients.	5A	Nine	identical	gray	luminances	have	9	different	appearances.	5B	Edges	cause	
large	changes	in	appearances,	while	gradients	are	almost	invisible.	5C	Photo	with	edge	in	sunlight	illumination.	
Vision	does	not	discount	edges	in	illumination.	5D	Photo	without	illumination	edge	taken	75	seconds	later.		

Edges	in	Illumina:on	

Figure	5C,D	is	a	pair	of	photographs	made	75	seconds	apart.	The	photos	were	taken	just	a\er	sunrise	
in	the	fall	of	2020.	In	5C	the	distant	trees	were	in	sunlight.	A	large	clump	of	closer	trees	were	in	the	
shadow	of	a	low	cloud.	That	cloud	created	a	sharp	edge	in	illumina/on.	In	75	seconds	a	cloud	moved	
to	 block	 all	 sunlight	 (5D).	 The	 edge	 in	 illumina/on	 was	 gone.	 The	 trees	 in	 the	 photographs	 have	
markedly	different	appearances.	Edges	in	illumina/on	cause	major	changes	in	Appearance.	

Most	people	pay	aMen/on	to	objects	in	the	Natural	Scene.	Photographers	study	illumina/on.	They	
observe	 the	 interac/on	 of	 objects	 and	 illumina/on.	 We	 are	 good	 at	 recognizing	 its	 approximate	
luminance;	 sunny	 vs.	 cloudy	 day;	 sunrise,	 dusk,	 sunset.	 Illumina/on	 contributes	 to	 our	 emo/onal	
state.	The	two	photographs	in	Figure	5C,D	have	different	emo/onal	impact,	even	though	two-thirds	
of	 their	pixels	are	 iden/cal.	There	 is	strong	evidence	that	Helmholtz’s	Unconscious	 Inference	exists.	
The	 important	 ques/on,	 however,	 is	 whether	 there	 is	 any	 actual	 evidence	 that	 Inferences	 affect	
Appearances,	rather	than	just	being	a	consequence	of	them.	In	Figure	5C,	observers	do	not	discount	
illumina/on.	

[	Summary:	Edges	in	Illumina;on	generate	the	same	visual	response	as	Edges	in	Reflectance.]	
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	 Color	Vision	responds	to	Natural	Scenes
5.	Capturing	the	Appearance	of	mulG-colored	Natural	Scenes	

J.C.	Maxwell’s	 inven/on	of	color	photography	used	three	different	R,	G,	B	spectral	photo	records	of	
the	 light	 from	 the	 scene.	 This	 inven/on	 is	 a	most	 helpful	 process	 in	 studying	 Color	 in	 the	Natural	
Scene	because	it	allows	us	to	experiment	independently	with	the	scenes’	color	informa/on,	and	the	
spectral	 transfer	 to	 receptors.	 Experimen/ng	 directly	 by	 changing	 illumina/on	 on	 objects	 changes	
both	scene	informa/on	and	receptor	responses	at	the	same	/me.	

Figure	6A	shows	the	R,G,B	color	separa/on	photographic	records.	It	lists	three	wavelengths	used	
to	make	an	addi/ve	color	projec/on	(656,	546,	450	nm	illumina/on).		

Note	the	six	color	squares	added	to	the	photograph	(RGBYMC).	Also	note	their	grayscale	rendi/on	
in	each	of	the	three	achroma/c	separa/ons.	Red	square	is	the	color	associated	with	white	square	in	
656nm,	black	in	556nm,	black	in	450	nm.	The	Y	square	is	black	in	the	B	record,	and	white	in	both	G	
and	R.	Full	color	reproduc/ons	are	possible	with	RGB	spectral	 informa/on	of	 the	en/re	scene,	and	
different	wavelengths	of	light	to	transmit	the	color	informa/on	to	the	L-,	M-,	S-cones.(Fig	6A)	These	
photo	 color	 separa/ons	 are	 a	 constant	 record	 in	 all	 wavelengths.	 Full	 color	 photographs	 require	
different	spectral	informa/on	(R,G,B	separa/on	records)	and	different	sensory	color	channels	(L,	M,	S,	
rods).	 If	 the	 separa/on	 records	are	 iden/cal,	 the	appearance	 is	monochroma/c.	 L,	M,	and	S	 cones	
work	best	in	roughly	equal	energy	illumina/on,	such	as	daylight.	

Two-	color	natural	scenes	

We	 can	 use	 spa;al	 records,	 and	 channel	wavelengths	 to	 analyze	 natural	 complex	 colored	 scenes.	
Maxwell’s	 color	 separa/on	 photographs	 on	 black	&	white	 film	has	 frozen	 the	 spectral	 informa/on	
from	each	scene	segment.	Full	color	reproduc/ons	requires	three	separa/ons	and	three	transmission	
wavelengths.	However,	two	spectral	separa/on	photos,	and	two	illumina/on	spectra	make	mul/color	
scenes	(Figure	6B).	Here	we	have	the	same	three	wavelengths	illumina/ng	the	records.	However,	we	
have	used	the	G	records	 in	both	the	556nm	and	456nm	light.	The	result	 is	a	two-color	rendi/on	of	
the	scene	that	has	many	different	hues,	lightnesses,	and	chromas,	but	not	all	of	them.	
[Color	Separa;ons	freeze	scene’s	spa;al	informa;on	that	Spectral	light	sends	to	them	to	LMS	cones]	

Figure	6.	Three	Color,	two	Color	channels,	and	Color	from	rods	and	L-cones.	6A	Photo	mimicking	Maxwell’s	3	color	
photos	using	3	records	in	3	wavelengths.	6B	Two	channel	color.	6C	Spectra	of	receptors,	moonlight	and	firelight.	
6D	Appearance	in	bright	firelight	(>	M&S	cone	threshold).	6E	Appearance	in	dim	firelight	(<	M&S	cone	threshold).	

Rods	in	dim	firelight	are	color	receptors		(below	M-&	S-cone	threshold)	

While	life	on	earth	dates	back	3.5	billion	years,	and	vision’s	Opsin	chemistry	dates	back	600	million	
years,	 our	 L-cones	muta/on	 is	much	more	 recent,	 namely,	 30	 to	 6	million	 years.(McCann,	 2006a)	
Most	moonlit	scenes	appear	achroma/c.	Highly	colored	objects	appear	as	shades	of	gray	without	a	
full	 moon.	 Max	 Schultze	 (1866)	 proposed	 Duplicity	 Theory;	 simply	 stated,	 rod	 receptors	 form	 an	
achroma/c	 channel;	 cones	 form	 chroma/c	 channels.	 Figure	 6C	 plots	 the	 rela/ve	 light	 needed	 for	
absolute	 threshold	 of	 rods	 and	 L,M,S	 cones	 at	 each	wavelength.	 Blue	 curve	 plots	 S-cones	 spectral	
sensi/vity.	 The	 green	 and	 red	 curves	 plot	 M-	 and	 L-cone	 sensi/vi/es.	 The	 white	 curve	 plots	 rod	
sensi/vity.	At	500	nm	rods	are	1000	/mes	more	sensi/ve	to	light	than	cones	(McCann,	2006a).		
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	 Color	Vision	responds	to	Natural	Scenes
A	 large	collec/on	of	different	experiments	have	shown	that	rods	and	cones	 interact	to	generate	

two-color	 vision.	 (For	 current	 reviews:	 see	 Stabell	 and	 Stabell	 (2006),	 and	 McCann,	
(2021:RodConeColor).	These	experiments	use	the	many	dis/nct	physiological	proper/es	of	rods	and	
cones	to	iden/fy	whether	a	par/cular	visual	response	is	from	rods,	or	from	cones.	These	physiological	
proper/es	 include:	 ac/on	 spectra,	 dark	 adapta/on	 threshold,	 S/les-Crawford	 effect,	 flicker	 fusion	
frequency,	 gray	 vs.	 color	 appearance	 of	 monochroma/c	 s/muli,	 and	 apparent	 sharpness	 of	 the	
image.	In	these	experiments	observers	reported	seeing	mul/color	images	when	G	record	illumina/on	
levels	were	well	below	M-	and	S-cone	thresholds.	Using	rods	and	L-cones	makes	mul/color	scenes.	As	
an	 example,	 observers	 adjusted	 the	 G	 record	 luminance	 of	 a	 mul/colored	 (two	 color)	 image	 to	
measure	the	best	color	balance	-	not	too	warm,	nor	too	cool.	The	luminance	of	the	656nm	on	the	R	
record	 was	 constant.	 The	 measurement	 was	 repeated	 varying	 the	 wavelength	 of	 the	 G	 record	
illumina/on	 from	 420	 to	 610nm.	 Observers	 adjusted	 each	 wavelength’s	 luminance	 for	 best	 color	
balance.	The	plot	of	best	color	balance	luminance	vs.	wavelength	measured	the	ac/on	spectra	of	the	
color	 judgement.	 That	 ac/on	 spectra	 fit	 the	 scotopic	 (rod)	 sensi/vity	 curve.	 The	 ac/on	 spectra	
showed	that	G	record	adjustments	were	made	using	rods	alone.	(McKee,	McCann	&	Benton,	1977).	

								Demonstra:on	of	Rod/L-cone	colors	

At	low	light	levels	reflected	moonlight	excites	the	rods,	but	does	not	have	enough	light	to	excite	the	L,	
M,	S	cones.	The	spectrum	of	firelight	is	1700°K.	In	Fig	6C	moonlight	and	firelight	have	equal	radiances	
at	500	nm.	Firelight	has	nearly	10	/mes	more	radiance	at	650	nm	than	moonlight.	Dim	firelight	is	an	
ideal	 emission	 spectra	 to	 excite	 rods	 and	 L-cones	 to	 making	 spa/al	 comparisons	 in	 two	 color	
channels,	while	having	 insufficient	 light	to	excite	M-	and	S-cones.	Observers	report	2	channel	Color	
vision	at	low-illumina/on	intensi/es	in	firelight.		

Figure	 6D	 illustrates	 the	 appearance	 of	 an	 inkjet	 print	 illuminated	 by	 a	 single	 burning	 candle	
placed	close	to	the	print.	LeMers	A,	C	appear	green;	leMer	I	appears	blue.	These	are	3	channel	colors.	

By	 simply	moving	 the	 printed	 AIC	 target	 away	 from	 the	 candle,	 its	 illuminance	 decreases	 with	
distance.	Figure	6E	illustrates	the	appearance	of	the	same	inkjet	print	illuminated	by	that	candle	far	
from	the	print.	Observers	report	that	 leMers	A, I and	C	all	appear	cyan.	When	the	AIC	print	 is	far	
from	the	candle,	the	color	appearances	are	the	result	of	2	channel	rod	and	L-cone	color	interac/ons.	
The	AIC	 print	 in	 the	 observer’s	 hand	 does	 not	 change,	 but	 the	 decrease	 in	 firelight	 took	 it	 from	
above	L,M,S	cone	threshold	-	to	below	M,	S	cone	threshold.	The	cyan	AIC	is	from	rod/L-cone	color	
interac/ons.	Download	the	AIC	file,	print	it	,	and	try	it!	(McCann,	2021:	DemoRod-Lcone).			

[	Summary:	The	rods	are	a	perfectly	good	color	receptor	in	appropriate	firelight	illumina;on	]	

6.	What	is	Vision’s	Response	FuncGon	(VRF)	to	light?	

We	o\en	talk	about	the	response	of	the	eye	to	 light.	Too	o\en	we	talk	about	 it	as	 if	we	have	a	
fixed	Vision	Response	Func/on	(VRF)	to	light,	just	as	silver	halide	film	does.	Film	catches	quanta	that	
convert	 ions	 to	 atoms	 that	 absorb	 light.	 That	 response	 is	 constant	 in	 all	 parts	 of	 all	 scenes,	 in	 all	
condi/ons.	We	all	know	that	human	response	to	light	is	variable.	We	know	that	pupil	size	is	variable,	
and	that	dark	and	light	adapta/on	is	variable.	Measurements	of	Human	VRF	ask	the	ques/on:	“If	a	
spot	 of	 light	 has	 two	 /mes	 the	 luminance,	 how	 much	 does	 appearance	 change?”	 This	 is	 a	 trick	
ques/on.	 The	 answer	 is	 that	 there	 are	 many	 dis/nctly	 different	 VRFs.	 Observers	 answer	 specific	
ques/ons.	 Each	 ques/on,	 such	 as	 “Can	 you	 detect	 this	 light?”	 gives	 reproducible	 answers	 across	
many	observers.	The	problem	 is	 that	different	scenes,	and	different	ques/ons	give	a	wide	range	of	
reliable		answers!	

Figure	7A	plots	the	VRF	for	three	scenes.[See	inset	with	illustra/ons:	100%W	(top);50%W(middle);		
0%W	BoMom)].	 It	 is	 the	plot	of	Lightness	vs.	Re/nal	 luminance	(a\er	glare)	 for	three	different	HDR	
transparency	 test	 targets,	 all	with	 ranges	 close	 to	 6	 log10	 units.	 The	VRF	of	 40	 gray	 squares	 in	 the	
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Black	 surround	 (0%	Max	 luminance)	 is	 a	 low	 slope	 log	 plot	 over	 the	 range	 of	 10,000:1	 between	
Appearance	White	and	Appearance	Black.	In	the	100%	Max	luminance	surround,	the	same	range	of	
Appearance	White	to	Appearance	Black	plots	over	only	30:1	range	of	re/nal	luminances.	In	50%	Max	
Luminance	the	White	to	Black	change	plots	a	100:1	range	of	luminances.	 	The	content	of	the	re/nal	
image	changed	the	White	to	Black	VRF	of	re/nal	luminances	by	a	factor	of	300	in	range.	(McCann	&	
Rizzi,	2012;	McCann	and	Vonikakis,	2018).	

Figure	 7B	 plots	 the	 VRF	 for	 four	 circular	 gray	 scales	 with	 different	 luminances	 in	 an	 opaque	
surround.	 These	 gray-scale	 transparencies	 have	 a	 range	 of	 20:1.	 The	 top	 circle	 had	 maximum	
luminance;	others	had	neutral	filters	that	reduced	luminances	by	factors	of	10,	100,	1000.	The	overall	
target	has	a	range	of	18,909:1.	Figure	7B	(blue)	plots	VRF	Lightness	vs.	log	scene	luminance.	All	4	VRF	
Appearances	have	parallel	slopes,	each	normalizes	to	the	local	maxima	in	each	circle.	The	green	line	
plots	the	Appearances	of	just	the	local	Maxima.(McCann,	2006b;	McCann	&	Rizzi,	2012:	113-219).		

	Maxima	have	the	same	slope	VRF	in	single	spots	of	light,	in	complex	scenes,	and	in	local	regions	
of	a	complex	scene.	Neural	processing	assigns	all	maxima	to	the	same	(green	line)	VRF.	Other	nearby	
darker	scene	elements	have	variable	slope	VRF	that	depends	on	the	local	content	of	the	scene.	

[	Summary:	The	Appearance	of	Maxima	have	a	fixed	slope	VRF	in	all	scenes.	]	
[	The	VRF	Appearance	of	darker	scene	segments	varies	with	the	content	of	the	scene.	]	

Figure	7.	Studies	of	VRFs	and	3-D	Mondrians.	7A	plots	Lightness	vs.	HDR	retinal	Luminance	in	3	displays	with	
different		surrounds.	7B	plots	Lightness	vs.	Scene	luminance	in	4	circles	in	one	display.	7C	&	7D	shows	Carinna	
Parraman’s	watercolor	paintings	of	3-D	blocks	in	LDR	(7C)	and	HDR	(7D)	illumination.	

7.	Measurements	of	Color	Constancy	with	Edges	in	illuminaGon	

A	low-dynamic-range	scene	can	be	thought	of	as	an	arrangement	of	papers	mounted	on	a	flat	surface	
in	perfectly	uniform	ambient	 illumina/on.	The	range	of	the	scene	is	 limited	by	the	range	of	surface	
reflectances	of	the	papers.	White	to	Black	maMe	papers	have	a	range	of	30:1.	High-dynamic-range	is	
the	 direct	 result	 of	 nonuniform	 illumina/on.	 Natural	 scenes,	 with	 sun	 and	 shadows,	 o\en	 have	
ranges	of	>3,000:1.	By	combining	light	emiMers,	reflec/ve	surfaces,	transparencies,	and	shadows,	one	
can	create	almost	any	scene	dynamic	range.	The	prac/cal	limits	of	image	dynamic	range	is	imposed	
by	the	op/cs,	not	scene	radiances.	How	does	expanding	illumina/on	range	affect	color	constancy?	

McCann,	Parraman	and	Rizzi	(2014)	used	a	3-D	arrangement	of	blocks	with	104	painted	facets.	All	
facets	were	painted	with	one	of	11	paints	(R,	Y,	G,	C,	B,M,	W,	G1,	G2,	G3,	Bk).	The	experiment	used	
two	sets	of	iden/cal	blocks	in	two	different	illumina/ons:	LDR	illumina/on	using	a	light-diffusion	tent;	
HDR	illumina/on	with	direc/onal	lights	that	made	sharp	shadow	edges.		

In	the	first	experiment	observers	used	color	maps	to	 iden/fy	all	surfaces	painted	with	one	color	
paint.	Observers	used	magnitude	es/ma/on	 to	measure	 the	departures	 from	constancy	 for	all	 red	
painted	surfaces.	Then,	observers	measured	Constancy	departures	for	all	paint	surfaces	in	both	LDR	
and	HDR	scenes.	Departures	from	Constancy	were	substan/ally	larger	in	HDR	illumina/on.		

In	the	second	experiment	Carinna	Parraman	made	watercolor	pain/ngs	of	the	LDR	(Figure	7C	and	
HDR	 (Figure	7D)	3-D	Mondrians.	Her	paints	matched	 the	appearance	of	every	 image	segment.	She	
painted	 them	 in	 uniform	 illumina/on	 on	 the	 watercolor	 paper.	 She	 then	 measured	 the	 surface	
reflectance	 of	 each	 segment	 to	 quan/fy	 their	 appearances.	 The	 reflectances	 of	 these	 matching	
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Appearances	showed	the	same	result.	Iden/cal	painted	surfaces	in	HDR	illumina/on	had	much	larger	
departures	from	perfect	constancy.	

[	Color	Constancy	is	absent	in	single	spots	of	light	in	darkness;		
strongest	in	flat	LDR	Mondrians	in	uniform	illumina;on;		

and	much	weaker	in	Natural	3-D	scenes	with	edges	in	HDR	illumina;on.	
Prior	knowledge	of	the	surface’s	actual	reflectance	does	not	affect	Appearances.]	

8.	HDR	rendiGons	

Figure	8	 is	an	 illustra/on	of	successful	HDR	rendi/on	algorithms.	 In	Figure	8A	Leonardo	da	Vinci	
made	Chiaroscuro	pain/ngs	around	1500	that	renders	both	objects	and	illumina/on.	Figure	8B	shows	
van	Honthorst’s	1620	pain/ng	of	four	figures	at	different	distances	from	a	candle,	in	different	levels	of	
illumina/on.	The	painter	used	local	maxima	to	compress	the	range	of	the	scene.	Below	the	pain/ng	is	
a	plot	of	appearances	of	4	pie-shaped	gray	scale	transparencies	(described	above	in	Figure	7C).	The	
candle	and	the	faces	of	the	four	people	are	local	maxima.	They	darken	at	a	very	low	rate	(Green	line).	
The	 scenes	 around	 them	 have	 a	 very	 high	 rate.	 This	 recent	 psychophysical	 experiment	 gives	
quan/ta/ve	calibra/on	to	the	Appearances	that	van	Honthorst	observed	500	years	ago.	

Figure	8C	shows	“John	at	Yosemite,	1981”	digital	print	of	mul/-resolu/on	calculated	Appearances	
on	film.	The	HDR	photo	was	taken	in	Yosemite	Valley.	The	shade	of	the	tree	had	30	/mes	(5	stops)	
less	illumina/on	than	the	sunlight.	Spot	photometer	readings	from	John’s	white	card	(in	shade)	were	
equal	 to	 ColorChecker®’s	 black	 square	 (in	 sunlight).	 The	 sun-shade	 scene’s	 dynamic	 range	was	 10	
stops,	 or	 1,000:1.	 Color	 print’s	 range	 cannot	 reproduce	 this	 scene.	 However,	 color	 nega/ves	 have	
>1,000:	1	sensi/vity	range.	Figure	8C	used	color	nega/ve	film	to	capture	the	scene;	an	Itek	scanner	to	
digi/ze	 it;	 and	Frankle	and	McCann’s	 (1983)	mul/-resolu/on	Re/nex	 image	processing	 to	 calculate	
appearances	to	reduce	the	output	range	to	30:1	to	print	on	film	(McCann	and	Rizzi,	2012).	

Figure	8.	Successful	HDR		Spatial	Processes:	(A)	daVinci	painting;	van	Honthorst’s	painting	with	local	normalization;	
(C)	Retinex	algorithm;	(Da)	Control;	(Db)	HP	Retinex	Camera;	(Dc)	Apple	iPhone	X.		

Figure	8D	shows	 three	photos	of	 the	same	scene;	 (le\	Da)	 is	a	control	photo	using	a	fixed	RGB	
tone-scale	pipeline	for	pixels;	 (Db)	 is	an	HP’s	Digital	Flash	 implementa/on	of	Frankle	and	McCann’s	
Re/nex	algorithm	(1983);	 (Dc)	 is	a	 iPhone	X	synthesis	of	 local	regions	selected	from	many	different	
exposures.	By	selec/ng	the	image	segments	with	best	local	rendi/on	and	fusing	it	with	other	op/mal	
rendi/ons	from	different	 images	 it	synthesizes	the	best	overall	rendi/on.	All	of	these	techniques	of	
pain/ng,	 calcula/ng,	 and	 firmware	 processing	 are	 different,	 but	 they	make	 rendi/ons	 that	 human	
vision	accepts	as	an	Appearance	record	of	the	en/re	original	scene.	These	very	different	technologies	
all	mimic	vision’s	response	to	the	Natural	Scene.	They	all	render	the	HDR	scenes	in	LDR	images.	They	
are	all	spa/al	transforma/ons	of	scene	radiances.	The	most	important	feature	of	Figure	8’s	processes	
is	 they	 work	 in	 all	 scenes,	 HDR	 and	 LDR.	 Unlike	 pixel	 pipelines,	 vision	 and	mul/resolu/on	 spa/al	
comparison	algorithms	successfully	process	all	scene	ranges	in	all	types	of	scenes.	Electronic	Imaging	
has	begun	to	learn	what	painters	did	6	centuries	ago.	

[	Electronic	Imaging	is	beginning	to	mimic	our	color	vision’s	interpreta;on		
of	the	Natural	Scene	] 
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Summary:	Color	Vision’s	responses	to	Complex	Natural	Scenes	

Human	color	vision	is	the	result	of	light	captured	by	receptors,	and	followed	by	the	neural	processes	
that	 lead	 to	 Appearances.	 This	 talk	 reviews	 8	 different	 studies	 of	 complex	 and	 Natural	 Scenes.	
Tradi/onally	 vision	 research	 emphasizes	 the	 quanta	 catch	 of	 molecules	 as	 the	 first	 step.	 While	
necessary,	molecular	physics	is	not	sufficient	because	of	pre-re/nal	intraocular	glare,	and	post-re/nal	
neural	 spa/al	 processing.	 These	 8	 studies	 of	 complex	 scenes	 expand	 our	 understanding	 in	 many	
ways.	They	 include	Uniform	Color	Space,	Null	visual	 illusions	of	Contrast	and	Assimila/on,	Edges	 in	
illumina/on,	 Rods	 as	 color	 receptors,	 Appearance	 normaliza/on	 to	 local	 maxima,	 digital	 image	
processing,	 and	 HDR	 scene	 compression	 technology.	 Many	 new	 ideas	 and	 understandings	 about	
Color	Vision	have	come	from	simply	using	the	complex	Natural	Scene	as	the	experimental	s/mulus.	
These	ideas	and	proper/es	of	vision	cannot	be	observed	in	the	too-restric/ve	experiments	of	spots	of	
light.	Furthermore,	the	integra/on	of	mul/-resolu/on	spa/al	comparisons	of	3	color	channels	has	led	
to	 proven	 models	 of	 Appearance,	 and	 prac/cal	 real-/me	 technology	 implementa/ons	 of	 Color	
Constancy.	 These	 successful	 spa/al-comparison	 processes	 do	 not	 need	 unproven	 inference	 and	
illumina/on	detec/on	in	order	to	calculate	Appearances.	Color	is	the	response	of	20th	century	edges	
and	gradient,	not	19th	century	reflectances	and	illumina;on.	Spa/al	comparisons	make	the	job	of	AI	
computer	models	 of	 object	 recogni/on	 prac/cal.	When	 spa/al	 processing	 calculates	 Appearances,	
the	job	of	calcula/ng	spa/al	inferences	become	much,	much	easier.	

Painters	 have	 rendered	 both	 scene	 and	 its	 illumina/on	 since	 daVinci.	 They	 do	 it	 by	 local	
normaliza/on	and	controlling	edges	and	gradients.	They	render	the	high-dynamic-range	world	in	low-
dynamic-range	media.	These	same	image	processing	principles	are	becoming	obvious	from	the	study	
of	 the	 spa/al	 paMerns	 of	 light	 on	 the	 re/na,	 the	 variability	 of	 visions	 response	 to	 light	 with	 the	
contents	of	scenes,	as	well	as	the	neurophysiology	of	spa/al	image	processing	in	the	visual	pathway.	
These	8	dis/nct	studies	show	that	the	contents	of	Natural	Scenes	have	a	major	ac/ve	role	 in	Color	
Appearances.	The	contents	of	each	Natural	Scene	determines	 the	op/cal	glare	 transforma/on	 that	
becomes	the	re/nal	quanta	catch.	The	contents	of	the	re/nal	image	response	determines	the	neural	
spa/al	 transforma/ons	 that	 becomes	 Appearance.	While	 receptors	 count	 quanta,	 both	 pre-re/nal	
glare	and	post-receptor	spa/al	transforma/on	make	substan/al	modifica/ons	to	scenes’	radiances.		

Too	o\en	we	think	of	Color	as	a	signals	from	a	single	spot	of	re/na	sent	to	the	brain.	In	fact,	it	is	
the	op/cal	 imaging	of	 all	 the	 scene’s	 light	 introduces	glare	 that	 transforms	 the	HDR	Natural	 Scene	
radiances	to	a	new	light	distribu/on	on	receptors.	The	re/na	responds	simultaneously	to	the	quanta	
catch	of	all	receptors.	Then,	neural	image	processing	make	spa/al	comparisons.	Glare	is	substan/al	in	
the	Natural	Scene,	but	spa/al	processing	makes	it	hard	to	see.	Neural	vision	responds	to	the	content	
and	arrangement	of	 the	array	of	 receptor	 responses.	Neurons	process	 the	 spa/al	 informa/on,	not	
just	 transmit	 it	 to	 undefined	 higher	 cogni/ve	 levels.	 Neurons	 respond	 to	 edges	 to	 synthesize	
Appearances,	 by	 compressing	 dynamic	 range,	 and	 compensa/ng	 for	 the	 effects	 of	 op/cal	 glare.	
Unlike	 the	HDR	Natural	 scene,	glare	 is	 inconsequen/al	 in	Colorimetry’s	 spot	of	 light.	The	effects	of	
Natural	Scenes	on	Color	Vision	cannot	be	observed	in	experiments	limited	to	a	single	spot	of	light	in	a	
dark	room.	Our	vision	evolved	over	the	last	30	million	years	to	extract	informa/on	from	all	possible	
Natural	Scenes.	
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