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Abstract

Sir Isaac Newton's prism experiments were fundamental to the
development of two distinct areas of modern science. The first was the
physics of light and the second was the biology of color vision. While
discussing color and color imaging systems it is important to distinguish
between the domain of physics and the domain of biology. To illustrate
that distinction, this paper will review historic experiments in color
perception and discuss the varieties of color sensations that can be
produced by a single physical stimulus.

When Sir Isaac Newton sent a pencil of sunlight through a prism, he initiated two
distinct but closely intertwined sciences. The first was the physics of light; the second
was the biology of vision. The study of light describes what light is, how it is produced,
propagated, reflected, refracted, transmitted, and absorbed. The other science, the study
of vision, starts with the human sensations produced by light, and tries to understand the
way particular sensations are produced by particular light stimuli falling on the eye.

Although these two subjects are distinct areas of science searching for solutions to
different problems, they are closely intertwined. In the 17th century, the human visual
system was the only radiometer available. This meant that physical measurements had to
be made with a biological system. Today there is an abundance of radiance measuring
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devices. They are necessary for precisely describing the stimuli that generate a particular
sensation.

The main concern of this chapter is the development of ideas about the biology of
human vision. In the beginning, the important ideas were not easily separable from those
of physics. To begin let us see how Newton summarized his prism experiments.

"In the Experiments of the fourth Proposition of the first Part of this first
Book, when I had separated the heterogeneous Rays from one another, the
Spectrum pt formed by the separated Rays, did in the Progress from its
End p, on which the most refrangible Rays fell, unto its other End t, on
which the least refrangible Rays fell, appear tinged with this Series of
Colours, violet, indigo, blue, green, yellow, orange, red together with all
their intermediate Degrees in a continual Succession perpetually varying.
So that there appeared as many Degrees of Colours, as there were sorts of
Rays differing in Refrangibility. " 1

Newton made an important distinction between refractability and sensation.

"The homogeneal Light and Rays which appear red, or rather make
Objects appear so, I call Rubrifick or Red-making; those which make
Objects appear yellow, green, blue, and violet, I call Yellow-making,
Green-making, Blue-making, Violet-making, and so of the rest. And if at
any time I speak of Light and Rays as coloured or endued with Colours, I
would be understood to speak not philosophically and properly, but
grossly, and accordingly to such Conceptions as vulgar People in seeing
all these Experiments would be apt to frame. For the Rays to speak
properly are not coloured. In them there is nothing else than a certain
Power and Disposition to stir up a Sensation of this or that Colour." 2

Then eight propositions later he describes the variation in colors of natural bodies.

"These Colours arise from hence, that some natural Bodies reflect some
sorts of Rays, others other sorts more copiously than the rest. Minium
reflects the least refrangible or red-making Rays most copiously, and
thence appears red. Violets reflect the most refrangible most copiously,
and thence have their Colour, and so of other Bodies. Every Body reflects
the Rays of its own Colour more copiously than the rest, and from their
excess and predominance in the reflected Light has its Colour." 3
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There are two parts of this hypothesis. The first is that different bodies reflect
different portions of the spectrum. The second is that the composition of the light coming
to the observer’s eye from that body determines its color. If Newton had been using
current terminology, he would have said that color sensations simply depended on the
wavelength-energy distribution of the light. Extending that statement we might say
Newton believed that a unique color sensation was associated with a particular
wavelength-energy distribution. The validity of this second part of Newton’s hypothesis
is carefully examined throughout this chapter.

In 1802, Thomas Young proposed a fundamental change in Newton's theory of
how humans saw color sensations. He suggested that there were three kinds of receptors
in the human eye. This was a very important hypothesis because it maintained the
distinction set forth by Newton between the properties of light and the properties of
human sensations. Lomonosov and Palmer in that period failed to maintain this
distinction and suggested that there were only three kinds of light and three kinds of
visual receptors." Young recognized that Newton's theory of light was accurate and that
the properties of color mixing need only apply to human vision.

"Now, as it is almost impossible to conceive each sensitive point of the
retina to contain an infinite number of particles, each capable of vibrating
in perfect unison with every possible undulation, it becomes necessary to
suppose the number limited, for instance, to the three principal colours,
red, yellow, and blue, ... : and each sensitive filament of the nerve may
consist of three portions, one for each principal colour."5

Young proposed that there were three receptors at each color sensitive point in the
retina. The wavelength-energy distribution at each point determines the integrated
response (over the bandwidth of receptor sensitivity) of each of these receptors. The
relative response of each receptor at each point determines the color sensation. Finally,
we would expect Young to believe that for each unique triplet of integrated receptor
responses, there would be a unique color sensation.

There were really two distinct parts of Young's hypothesis. The first was that
there are three kinds of receptors. The second was that these three receptors work as a
triplet at a point. One hundred sixty-six years after Young proposed the idea, Brown and
WaId6 and Marks, Dobelle, and MacNichol7 measured the spectra of cones in the human
retina. They found three different pigments in the cone receptors. The hypothesis that
these three kinds of receptors must work at a point has yet to be proven true. In fact, there
is substantial evidence to be discussed later that the second part of Young's hypothesis is
not true.

The next major addition to the history of color science was made by
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James Clerk Maxwell and Hermann von Helmholtz. They took the suggestion made by
Young and established it as experimentally tested theory. Maxwell invented the color top
that enabled the quantitative measurement of color mixing, wrote the first color mixing
equations, and proceeded from Newton's color circle to set up the first color triangle
defined by experiments.

"Let it be granted that the three pure sensations correspond to the colours
red, green, and violet, and that we can estimate the intensity of each of
these sensations numerically.

"Let v, r, g be the angular points of a triangle, and conceive the three
sensations as having their positions at these points. (See Figure 1-1) If we
find the numerical measure of the red, green, and violet ports of the
sensation of a given colour, and then place weights proportional to these
parts at r, g, and v,

Figure I-I - One of Maxwell's color triangles from a letter to Dr. G. Wilson, 1855.
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and find the centre of gravity of the three weights by the ordinary process,
that point will be the position of the given colour, and the numerical
measure of its intensity will be the sum of the three primitive sensations.

"In this way, every possible colour may have its position and intensity
ascertained; and it is easy to see that when two compound colours are
combined, their centre of gravity is the position of the new colour.

"The idea of this geometrical method of investigating colours is to be
found in Newton's Opticks (Book I., Part 2, Prop. 6), but I am not aware
that it has been ever employed in practice, except in the reduction of the
experiments which I have just made. The accuracy of the method depends
entirely on the truth of the theory of three sensations, and therefore its
success is a testimony in favour of that theory.

"Every possible colour must be included within the triangle rgv. White will
be found at some point, w, within the triangle. If lines be drawn through w
to any point, the colour at that point will vary in hue according to the
angular position of the line drawn to w, and the purity of the tint will
depend on the length of that line.

"Though the homogeneous ray s of the prismatic spectrum are absolutely
pure in themselves, yet they do not give rise to the 'pure sensations' of
which we are speaking. Every ray of the spectrum gives rise to all three
sensations, though in different proportions; hence the position of the
colours of the spectrum is not at the boundary of the triangle, but in some
curve CRY G B V considerably within the triangle. The nature of this
curve is not yet determined, but may form the subject of a future
investigation.

"All natural colours must be within this curve and all ordinary pigments
do in fact lie very much within it. The experiments on the colours of the
spectrum which I have made are not brought to the same degree of
accuracy as those on coloured papers. I therefore proceed at once to
describe the mode of making those experiments which I have found most
simple and convenient.

"The coloured paper is cut into the form of discs, each with a small hole in
the centre, and divided along a radius, so as to admit several of them
being placed on the same axis, so that
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part of each is exposed. By slipping one disc over another, we can expose
any given portion of each colour. These discs are placed on a little top or
teetotum, consisting of a flat disc of tin-plate and a vertical axis of ivory.
This axis passes through the centre of the discs, and the quantity of each
colour exposed is measured by a graduation on the rim of the disc, which
is divided into 700 parts. (See Figure 1-2.)

"By spinning the top, each colour is presented to the eye for a time
proportional to the angle of the sector exposed, and I have found by
independent experiments, that the colour produced by fast spinning is
identical with that produced by causing the light of the different colours to
fall on the retina at once.

"By properly arranging the discs, any given colour may be imitated and
afterwards registered by the graduation on the rim of the top. The
principal use of the top is to obtain colour equations. These are got by
producing, by two different combinations of colours, the same mixed tint.
For this purpose there is another set of discs, half the diameter of the
others, which lie above them and by which the second combination of
colours is formed.

"The two combinations being close together, may be accurately compared,
and when they are made sensibly identical, the proportions of the different
colours in each is registered, and the results equated." 8

In the following quotation from a paper presented to the Royal Society of
Edinburgh, Maxwell reviews the contributions of Newton and Young and describes his
invention of color photography. (In 1861 Maxwell exhibited the first trichromatic
photograph during a lecture before the Royal Institution 9.)

"Newton, who was the first to demonstrate the actual existence of a series
of kinds of light, countless in number, yet all perfectly distinct, was also
the first to propound a method of calculating the effect of the mixture of
various coloured light; and this method was substantially the same as that
which we have just verified. It is true, that the directions which he gives
for the construction of his circle of colours are somewhat arbitrary, being
probably only intended as an indication of the general nature of the
method, but the method itself is mathematically reducible to the theory of
three elements of the colour-sensation.
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Figure 1-2 - Diagram of Maxwell's color top from his 1857 article in the
transactions of the Royal Society of Edinburgh. At the top of the figure are
paper discs of different sizes with slits to allow them to slide over one
another. These discs were arranged and calibrated by the 100 divisions
around the outside (center diagram). The top itself is shown at the bottom
of the figure.
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"Young, who made the next great step in the establishment of the theory of
light, seems also to have been the first to follow out the necessary
consequences of Newton's suggestion on the mixture of colours. He saw
that, since this triplicate has no foundation in the theory of light, its cause
must be looked for in the constitution of the eye; and, by one of those bold
assumptions which sometimes express the result of speculation better than
any cautious trains of reasoning, he attributed it to the existence of three
distinct modes of sensation in the retina, each of which he supposed to be
produced in different degrees by the different rays. These three elementary
effects, according to his view, correspond to the three sensations of red,
green, and violet, and would separately convey to the sensorium the
sensation of a red, a green, and a violet picture; so that by the
superposition of these pictures, the actual variegated world is represented.

"In order fully to understand Young's theory, the function which he
attributes to each system of nerves must be carefully borne in mind. Each
nerve acts, not, as some have thought, by conveying to the mind the
knowledge of the length of an undulation of light, or of its periodic time,
but simply by being more or less affected by the rays which fall on it. The
sensation of each elementary nerve is capable only of increase and
diminution, and of no other change. We must al so observe, that the nerves
corresponding to the red sensation are affected chiefly by the red rays, but
in some degree al so by those of every other part of the spectrum; just as
red glass transmits red rays freely, but al so suffers those of other colours
to pass in smaller quantity.

"This theory of colour may be illustrated by a supposed case taken from
the art of photography. Let it be required to ascertain the colours of a
landscape, by means of impressions taken on a preparation equally
sensitive to rays of every colour.

"Let a plate of red gloss be placed before the camera, and an impression
taken. The positive of this will be transparent wherever the red light has
been abundant in the landscape, and opaque where it has been wanting.
Let it now be put in a magic lantern, along with the red glass, and a red
picture will be thrown on the screen.

"Let this operation be repeated with a green and a violet glass, and, by
means of three magic lanterns, let the three images be superimposed on
the screen. The colour of any point
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on the screen will then depend on that of the corresponding point of the
landscape; and, by properly adjusting the intensities of the lights, &c., a
complete copy of the landscape, as far as visible colour is concerned, will
be thrown on the screen. The only apparent difference will be, that the
copy will be more subdued, or less pure in tint, than the original. Here,
however, we have the process performed twice - first on the screen, and
then on the retina.

"This illustration will shew how the functions which Young attributes to
the three systems of nerves may be imitated by optical apparatus. It is
therefore unnecessary to search for any direct connection between the
lengths of the undulations of the various rays of light and the sensations as
felt by us, as the threefold partition of the properties of light may be
effected by physical means. The remarkable correspondence between the
results of experiments on different individuals would indicate some
anatomical contrivance identical in all. As there is little hope of detecting
it by dissection, we may be content at present with any subsidiary evidence
which we may possess. Such evidence is furnished by those individuals
who have the defect of vision which was described by Dalton, and which is
a variety of that which Dr. G. Wilson has lately investigated, under the
name of Colour-Blindness." 10

It is easy to see that the entire scope of this book is directly traceable to the work
of James Clerk Maxwell. He found experimental evidence supporting Young's three
receptor theory; he wrote the first equations of colorimetry; he invented the first color
photograph. In addition, he initiated the quantitative study of color-blindness. II It is fun
to imagine what his reaction might be if he were reading this book.

Many things have happened in the science and applications of color technology
since 1879. Although most of the basic ideas were known while Maxwell was alive, the
successful applications of those ideas came later. Additive color reproduction, while
started by Maxwell in his triple projection system, needed a variety of different
techniques before becoming practical. Today, additive color reproduction is used
primarily in color television. The subtractive color principle, first described by du Hauron
in 1862, is the basis of most present day color photography. As such, its use has spread to
the diversified areas of color printing, microfilming, aerial photography, etc. It is also the
principle used in instantaneous color processing introduced by Land in 1963. Concurrent
with these developments came the need for establishing standards of color matching for
use in science and industry. In 1931 the Commission
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International d'Eclairage first established such standards. One hopes that Maxwell would
enjoy seeing the wide variety of technological branchings which have grown from his
fruitful ideas.

 based more on the biology of vision. I can well afford to do this because the
continuation of Maxwell's experiments leads to colorimetry and we are very fortunate in
that the next chapter on colorimetry is by Dr. Gunter Wyszecki.

Maxwell did not experiment with what we described as the second half of
Young's hypothesis. That is, he did not test the idea that the three receptors worked at a
point to determine color. If you assume, as Maxwell must have, that the comparison of
red, green, and blue responses are compared at a point, then a unique triplet of red, green,
and blue should produce a unique color sensation. It would follow then that a single
wavelength-energy distribution should always look the same color. Helmholtz realized
that this was not always true. He devoted a chapter in the Physiological Optics on the
subject, which he called contrast. In the introduction to the chapter, Helmholtz says,

“... what we have to do now is to investigate the mutual influence of different
luminosities and colours appearing together in the visual field side by side with
each other.

"The result of such a juxtaposition usually is that each portion of the visual field
next (to) a brighter one looks darker, and vice versa; and a colour alongside
another colour resembles more or less the complementary colour of the latter.
The opposition thus manifested is implied in the term contrast." 12

At the end of the chapter he summarized the history of the subject.

"Leonardo da Vinci was quite familiar with contrast phenomena. He says that of
all colours of equal purity those are the most beautiful that are placed side by
side with their opposites; that is, white with black, blue with yellow, red with
green. Later the contrast phenomena that especially attracted attention more than
all others were coloured shadows. Otto v. Guericke knew about them and tried to
utilize them to prove Aristotle's statement, that blue could be obtained by mixing
white and black ... The subjective nature of the colour of one of the shadows
seems to have been discovered first by RUMFORD, by observing it through a
narrow tube. GOETHE, GROTTHUSS, BRANDES, and TOURTUAL adopted the
same view ... PLATEAU included contrast phenomena in his theory of afterimages
... The modifications of individual colours by their juxtaposi-

10
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tion to others were accurately described by CHEVREUL." 13

It is worthwhile to pause here and review in somewhat greater detail the
accumulated evidence from da Vinci, von Guericke, Rumford, Goethe, Plateau, and
Chevreul that a particular wavelength-energy distribution does not give a unique color
sensation. In the following quotation, Rumford described how he obtained colored
shadows.

"Desirous of comparing the intensity of the light of a clear sky, by day,
with that of a common wax candle, I darkened my room, and letting the
daylight from the north (coming through a hole near the top of the
window-shutter) fall at an angle of about 700 upon a sheet of very fine
white paper, I placed a burning wax candle in such a position that its rays
fell upon the same paper, and, as nearly as I could guess, in the line of
reflection of the rays of daylight from without; when, interposing a
cylinder of wood, about half an inch in diameter, before the centre of the
paper, and at the distance of about two inches from its surface, I was
much surprised to find that the two shadows projected by the cylinder
upon the paper, instead of being merely shades, without colour, as I
expected to find them, the one of them-that which, corresponding with the
beam of daylight, was illuminated by the candle,- was yellow; while the
other, corresponding to the light of the candle -- and consequently
illuminated by the light of the heavens, - was the most beautiful blue that it
is possible to imagine." 14

After a number of different experiments he said:

" ... I began to suspect that the colours of the shadows might in many
cases, notwithstanding their apparent brilliancy, be merely an optical
deception, owing to contrast or to some effect of the other real and
neighbouring colours upon the eye. "15

He then set up two Argand's lamps that emitted the same color light and hence did not
produce colored shadows. He looked through a blackened tube at one of the shadows
while an assistant placed a sheet of yellow glass before the lamp. He wrote,

“The result of the experiment was very striking, and fully confirmed my
suspicions with respect to the fallacy of many of the appearances in the
foregoing experiments.

"So for from being able to observe any change in the shadow upon which
my eye was fixed, I was not able even to tell when the yellow glass was
before the lamp and when it was not; and,
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though the assistant often exclaimed at the striking brilliancy and beauty
of the blue colour of the very shadow I was observing, I could not discover
in it the least appearance of any colour at all. But as soon as I removed
my eye from the tube, and contemplated the shadow with all its
neighbouring accompaniments, - the other shadow rendered really yellow
by the effect of the yellow glass and the white paper, which had likewise
from the same cause acquired a yellowish hue, _ the shadow in question
appeared to me as it did to my assistant of a beautiful blue colour." 16

Clearly the wavelength-energy distribution of the light was not affected by
viewing the shadows through a black tube. It follows then that a single physical stimulus
at a point does not generate a unique color sensation.

Da Vinci, Goethe, Chevreul and many others up to the modern work of Albers17

have studied the effect of colors surrounding other colors. This mass of evidence also
shows us that a single wavelength-energy distribution need not and does not generate a
unique color sensation.

Helmholtz's response to this realization was to suggest that pure simultaneous
contrast was due to a change, not of sensation, but of judgment. Helmholtz also realized
that the color of objects remained essentially constant, even though the wavelength
distribution of the illumination changed dramatically. Again, he argued that it was
judgment that made the visual system indifferent to large changes in wavelength-energy
distribution.

"By seeing objects of the same colour under these various illuminations, in
spite of difference of illumination, we learn to form a correct idea of the
colours of bodies, that is, to judge how such a body would look in white
light; and since we are interested only in the colour that the body retains
permanently, we are not conscious at all of the separate sensations which
contribute to form our judgment." 18

Helmholtz rejected the idea proposed by Hering19 that the responses of one region
of the retina affected the responses of other regions. In this century, experiments in
neurophysiology have unequivocally shown that interactions between adjacent parts of
the retina are found in almost every type of visual system. Experiments from those of
Hartline and Ratliff's20 on "the horseshoe crab to those of Werblin and Dowling's21 on the
vertebrate Necturus have shown interactions between widely spaced receptors.

If we take the results of the different contrast experiments and juxtapose them
with the ideas discussed by Newton, Young, and Maxwell, we arrive at a fundamental
paradox. In all these contrast experi-
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ments the triplets of Young's receptors receive the same physical stimulus. Yet, a variety
of sensations are produced by this single stimulus. All of these experiments indicate that
a particular wavelength-energy distribution need not produce a single color sensation. It
is obvious that something else is needed beyond Young's hypothesis for a sufficient
description of the visual system. Are we looking for a minor addition or are we looking
for a fundamental change? When we study the contrast experiments and the real everyday
visual environment, do we find that a. particular wavelength-energy distribution is always
nearly the same sensation, or do we find that it can be any color sensation? If we could
prove the latter, namely that a particular stimulus ca n produce any sensation, then we
would have to look for a fundamental change in our ideas about the biology of vision.

Land 22,23 performed an experiment in which a single mixture of red, green, and
blue light produced many different color sensations. The observers reported white, pink,
green, red, brown, yellow, purple, blue, and black sensations from one and the same
wavelength-energy distribution coming to their eyes from the points in question. The
experiment used a large complex display called the Mondrian. The display had about 100
different colored matte papers arranged arbitrarily so that no particular color surrounded
another. In fact, there were over five or six different papers around each other. The
display was illuminated by three projectors, each with a broad-band interference filter.
One filter transmitted part of the long waves, or red-making portion of the spectrum. The
second transmitted part of the middle-length waves, or green-making rays, and the third
transmitted part of the short waves, or blue-making rays. Each projector had an
independent brightness control. The observers picked an area - say a white one - and
measured the radiance from that area in each of the three illuminations. Then the
observers picked a second area - say a red one - and measured the three radiances from it.
These measurements showed that there was about the same amount of long-wave light
coming from the red paper as from the white, but there was much less middle- and short-
wave light. The illumination was then changed so that the same radiances came from the
red paper us came previously from the white paper. This was accomplished by increasing
the middle- and short-wave illuminations by the amounts that they were poorer reflectors
than white. All three illuminations were turned on together and the red area still looked
red even though it sent the same wavelength-energy distribution to the eye as the white
had a moment before. In the same manner, Land went from paper to paper in the display
and produced very nearly the full gamut of color sensations with a single wavelength-
energy distribution.

This experiment led Land to propose that something fundamental was wrong with
the idea that the biological system used the physical stimulus at a point. Instead of the
long-, middle-, and short-wave receptors comparing responses at a point, Land proposed
that all the long-
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wave receptors interacted to compute a biologic equivalent of reflectance from the long-
wave flux. Similarly the middle- and short-wave receptors acted as independent sets to
compute biologic reflectances for middle- and for short-wave flux.24 This biologic
correlate of reflectance integrated over a band of wavelengths is called lightness.25 It is
what we see if we look at the world in a single band of wavelengths. Land proposed that
there exist systems which he called Retinexes that generate the lightnesses in each of the
long, middle, and short wave bands. Color sensations are generated by comparing the
three different biologic reflectances or lightnesses.

The idea of the visual system sensing reflectance has its foundations back with
Newton. Remember, he described that certain bodies reflect some sorts of rays more
copiously than the rest, and hence their color. What Newton did not realize was the
paradox that color sensations stayed the same when the illumination changed. Maxwell
also was very close to the idea that reflectance in each wave band generated color
sensations. He made the first color separation photographs. Looking at these separations,
the observer sees the apparent reflectances integrated over each wave band. Maxwell, as
well as Newton, did not discuss the effects of illumination. Namely, color sensations
correspond to the reflectance of objects, even though the light in the natural environment
coming to the eye from these objects is determined by an extremely variable and
"unknowable" illumination.

The idea of an "unknowable" illumination is worth studying for a moment. Since
the flux at the eye is the product of the reflectance times the illumination, one cannot
determine the illumination from the total flux unless one knows the reflectance of the
object. In studying the physics of light today, determining reflectance is a trivial matter.
But remember, we are discussing the environmental problem confronting the evolving
animal. The illumination varies in spectral composition, such as sunlight vs. skylight; in
overall quantity, such as a bright day vs. a dark day; and in uniformity of illumination
across the field of view, such as shadows cast by clouds or trees, etc. The animal visual
system cannot use the same techniques the physicist would. The animal has neither
reflectance standards nor illumination standards. His estimation of the reflectance of
objects must be accomplished both instantaneously and internally. If within these
constraints the illumination is "unknowable," then the animal must have developed a
mechanism that can determine reflectance without separating illumination from the flux
at the eye. This is the job of each Retinex.  It must generate lightnesses that correspond to
reflectances. Land and McCann 26 proposed a visual mechanism for computing
reflectance regardless of the non-uniformities in illumination. This mechanism uses the
ratio of flux at closely spaced points and sequentially multiplies them to form a product.
This product is the mathematical model's approximation of reflectance. It is beyond the
scope of this chapter to discuss the details of this mechanism, however

14



McCANN

the basic hypothesis is that taking the ratio of flux at closely spaced points eliminates the
effect of gradual changes of illumination. The change in flux is so small from gradual
illumination changes that it cannot be detected by the ratio measuring cells. Abrupt
changes in flux are caused by edges between objects of different reflectance. The
magnitude of the change in reflectance across an edge is measured by the ratio operation,
thus establishing the relative reflectance of two adjacent areas. The ratio of reflectances is
then sequentially multiplied to obtain the relative reflectance of each object in the field of
view. Lightness, in principle, is also independent of overall changes in the level of
illumination. This follows naturally from the fact that lightness correlates with reflectance
and the reflectance of an object does not change with changes in illumination. The human
system approaches total independence; however, there exists enough of a dependence on
overall illumination to tell a bright day from a dark day.

Let us consider the effects of changing illumination from tungsten to zenith skylight. In
tungsten illumination the long-wave receptors would interact with each other to form a
lightness image that reported the biologic equivalent of reflectance for the long-wave
portion of the spectrum. The middle-wave receptors would interact to generate a different
set of lightnesses, as would the short-wave receptors to form a third set of lightnesses.
The next stage in the processing would be to compare the three biologic correlates of
reflectances of each area and to generate its color sensation. Now we change the
illumination from tungsten to zenith skylight. (For simplicity we can assume that both
illuminations have the same quantity of middle-wave light.) This change greatly
diminishes the amount of long-wave light and greatly increases the amount of short-wave
light. Again, according to Retinex theory the long-wave receptors interact to generate
lightnesses or biologic reflectances for each area. These lightnesses will be nearly
identical to those in tungsten illumination. The only difference will be that the overall
level of long-wave light will be lower and that might produce very slight changes in
lightness. Similarly the short-wave lightnesses will be the same except for slight shifts
due to increasing amounts of short-wave light. The same explanation applies to the
colored Mondrian experiments. Each Retinex computes lightnesses independent of the
overall level of illumination.

It is clear that when one accepts the idea that each kind of receptor acts as a set to
generate the correlate of reflectance, the problems of changing illumination and other
contrast experiments are easily explained. The study of color vision shifts to new
unexplored questions. How can a set of receptors compute reflectance? How do you
simulate, calculate, and observe the lightnesses produced by those broad-band visual
receptors? Is there a unique sensation associated with each triplet of I lightnesses?

Before we explore all these new questions, how sure can we be that
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the receptors are free to act as independent sets and not as three endings of a single nerve
as Young suggested? The answer is that there is good evidence at certain neural stages
that each set of cones is independent of the other sets of cones, as well as independent of
the rods.

Stiles,27 using increment threshold techniques, found almost complete independence
between rods and each cone mechanism. He superimposed a test flash of one variable
wavelength on a background of a second variable wavelength. For each mechanism, the
increment threshold was lowered in proportion to that mechanism's sensitivity to the test
spot and increased in proportion to its sensitivity to the surround. This simple
proportional relationship indicates the absence of interactions of the different
mechanisms. Alpern28 reported that the threshold for a 5 msec. flash can be greatly
increased by following it with a second flash surrounding the first. This phenomenon is
called metacontrast. Using the different spectral sensitivities, directional sensitivities and
rates of dark adaptation of rods and cones, Alpern designed metacontrast experiments to
test the independence of rods and cones. For example, when the test flash excited only
the rods, the surrounding after-flashes of different wavelengths but equal brightness to
the rods raised the test threshold the same amount. This indicated the absence of rod-cone
interactions in the metacontrast mechanism below cone threshold. Alpern also found
metacontrast after light adaptation when the cones had recovered sensitivity to light, but
the rods had not. This showed that cones affected cones as much as rods affected rods.
Alpern and Rushton29 extended the desensitizing metacontrast experiments to test the
independence of the cone mechanisms from each other. They used test flashes of
different various wavelengths and after-flashes of variable wavelengths. They found that
if a test flash excites one cone mechanism, then the after-flash raises this threshold only
by stimulating that mechanism in the surround. Stimulating the other cone mechanisms
does not affect the test flash threshold. Westheimer30 showed that illuminating the area
surrounding a test flash either increased its threshold (desensitizing) or decreased its
threshold (sensitizing) depending on whether the distance separating the surrounding
flash and the test flash was large or small. He used the sensitizing interactions to show
another type of rod-cone independence. He showed that sensitizing signals produced by
the rods did not produce sensitization in the cones. McKee and Westheimer 31 measured
the action spectrum of the sensitizing effect for the red and green color systems. They
showed that the desensitizing and sensitizing adaptation zones are found in both red and
green mechanisms. Further for each mechanism the surrounding sensitizing zone has the
same action spectrum. This supports the idea that the red and green cone mechanisms are
independent of each other at least at the levels that produce sensitizing and desensitizing
interactions.

Duplicity theory states that the rods and cones are completely different systems:
one for low-radiance, colorless vision and the other for
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high-radiance, color vision. The many different properties of images produced by rods
and cones have accumulated substantial support for the idea that the rod and cone
processes are different. The rods and cones have different shapes and distribution over
the retina,32 different rates of dark adaptation,33 different spectral sensitivities,34 different
directional sensitivities,35 different acuity properties,36 different flicker fusion
properttes,37 and independent desensitizing38 and sensitizing39 "retinal interactions .

Despite all this evidence that the rods and cones are independent systems,
experiments have shown that color sensations can be generated by the interactions of rods
and cones. Blackwell and Blackwell found that a rare type of color-blind observer
reported different color names even though he had only rods and short-wave cones.40

Stabell reported" color sensations from the interactions of afterimages (produced by
lights above cone threshold) and stimuli below cone threshold. 41

McCann and Benton found that the rods and long-wave cones interact to produce
color sensations.42 The technique was to determine the 546 nm flux necessary for a
threshold response of the rods and the 656 nm flux necessary for a threshold response of
the long-wave cones. Figure 1-3 shows the plot of wavelength vs. radiance necessary for
a threshold response of the rods and each type of cone. The shaded areas illustrate the
technique of providing just enough 546 nm flux to excite the rods and just enough 656
nm flux to excite the long-wave cones. Using those quantities of 546 nm and 656 nm
flux, McCann and Benton produced color sensations even though the 546 nm flux was a
thousand times below cone threshold. They further showed that the color images
produced by these interactions were nearly indistinguishable from images seen on two
wavebands entirely above cone threshold.

Performing experiments with only rods and long-wave cones provides a test of the
hypothesis that color depends on the lightnesses produced by independent systems.
Certainly the rods are part of an independent system that forms an image in terms of
lightness. We know this from the experiments supporting duplicity theory and from
observing the colorless rod image in very low illumination. In addition, the image seen by
the long-wave cones alone has no variety of color sensations, just an overall wash of red
covering the entire field of view. Here again we have an image in terms of lightness, with
a reddish wash that must interact with the colorless, rod lightness image. The interaction
of these two images as already described is almost indistinguishable from an image seen
on two wave bands entirely above cone threshold. This observation goes quite far in
supporting the idea that color sensations are generated by the comparison of lightnesses
formed by independent systems.

Can we press the hypothesis even further? Is it possible, in a complex image that
excites only the rods, to produce two significantly different lightnesses from areas
simultaneously sending the same radiance to the eye? Is it possible to combine such a rod
image with an image
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Figure 1-3 - Plot of wavelength vs. the radiance necessary to excite a
threshold response of the rods and the various types of cones in the retina.
The shaded lines indicate the radiances necessary for exciting the rods
with 546 nm light, and the long-wave cones with 656 nm light.

seen by the long-wave cones, which has different lightnesses produced by areas having
the same radiance? Do these areas produce different color sensations? Are the sensations
consistent with the hypothesis that colors are determined by the comparison of
lightnesses?

Land43 set up an experiment in which one area appeared red and another area
appeared green even though the radiations coming from both areas were identical. The
experimental display was a pastel chalk drawing by Jeanne Benton, called the Street
Scene (Figure 1-4), which included a green awning on the left side and a red door on the
right side.

I set up the Street Scene display and repeated Land's experiment with only the
rods and long-wave cones.44 I used two projectors with narrow-band interference filters,
one 656 nm the other 546 nm to illuminate the entire display. Figure 1-4 is a pair of
photographs of the Street Scene taken with the 656 nm and 546 nm filters in uniform
illumination. The door reflected a high percentage of long-wave radiation and
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Figure 1-4 - Multicolored chalk drawings by Jeanne L. Benton. Top photograph was
taken in uniform 656 nm illumination; the bottom in uniform 5046 nm illumination.
This drawing was used with controlled non-uniform 656 and 546 nm illumination to
produce two different color sensations from physically identical stimuli. The radiance
for each wavelength was also controlled so that only the rods and long-wave cones
were above threshold.
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a low percentage of middle-wave radiation. A wedge transparency was chosen for one
projector so that the same radiance at 656 nm came to the eye from the awning and the
door. Similarly, another wedge was placed on the other projector so that the same
radiance of 546 nm came to the eye from the awning and the door. Therefore, when both
projectors were turned on together, exactly the same composite stimulus was coming
from the center of both the awning and the door. The awning and the door sent only one-
seventh the amount of 546 nm light necessary to obtain a threshold response from the
middle-wave cones. The entire scene was below cone threshold for 546 nm light and
slightly above long-wave cone threshold for 656 nm.

The observers reported that the awning was dark gray in 656 nm illumination and
light gray in 546 nm illumination. They further described the door as being light gray in
656 nm and dark gray in 546 nm. The observers were then asked to describe the color
sensations of the two areas in the combined long- plus middle-wave illumination. They
reported that the sensations from those two areas were different from each other - green
and red - even though the centers of the areas sent identical physical stimuli to the eye.
Just as in Land's experiments entirely above cone threshold, the simultaneously identical
sets of radiances produced very different color sensations. Therefore, color sensations
from rod-cone interactions depend on the lightnesses of each area and not flux. Thus we
have established a specific example of the mechanism proposed by Land's Retinex
theory. Rods and cones act independently to form lightnesses which correlate with
reflectance. Lightnesses of the two systems are compared to generate color sensations.

Now we have completed the long trip from Newton's prism to a small portion of
the work that is taking place today. The physics of light is much more settled than the
biology of vision. Even within the study of vision we have many different fields that
differ because of their fundamental first assumptions. There is the domain of colorimetry
that comes closest to physics. There is the romantic anti-physical tradition followed by
Goethe and Hering. The problem most of us are concerned with is: What color sensation
will a particular wavelength-energy distribution produce? This particular question is
beyond the experimental definition of colorimetry, which is technically restricted to the
problem of color matching. When you step from the rigor of this closest relative of
physics into the world of the evolving animal, you find that visual sensations correspond
with reflectance. The animal has a mechanism for finding the reflectance of each object
from the light coming to his eyes. The mechanism does this even though the illumination
is "unknowable." The lesson from the biology of vision is that one must be very careful
when one leaves the orderly house of physics end ventures into our natural visual-
environments.
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